Regularized Machine Learning Models for Prediction of Metabolic Syndrome Using GCKR, APOA5, and BUD13 Gene Variants: Tehran Cardiometabolic Genetic Study.

接收机工作特性 逻辑回归 Lasso(编程语言) 人工智能 机器学习 代谢综合征 体质指数 医学 统计 内科学 计算机科学 数学 肥胖 万维网
作者
Nadia Alipour,Anoshirvan Kazemnejad,Mahdi Akbarzadeh,Farzad Eskandari,Asiyeh Sadat Zahedi,Maryam S. Daneshpour
出处
期刊:PubMed 卷期号:25 (8): 536-545 被引量:2
标识
DOI:10.22074/cellj.2023.2000864.1294
摘要

Metabolic syndrome (MetS) is a complex multifactorial disorder that considerably burdens healthcare systems. We aim to classify MetS using regularized machine learning models in the presence of the risk variants of GCKR, BUD13 and APOA5, and environmental risk factors.A cohort study was conducted on 2,346 cases and 2,203 controls from eligible Tehran Cardiometabolic Genetic Study (TCGS) participants whose data were collected from 1999 to 2017. We used different regularization approaches [least absolute shrinkage and selection operator (LASSO), ridge regression (RR), elasticnet (ENET), adaptive LASSO (aLASSO), and adaptive ENET (aENET)] and a classical logistic regression (LR) model to classify MetS and select influential variables that predict MetS. Demographics, clinical features, and common polymorphisms in the GCKR, BUD13 and APOA5 genes of eligible participants were assessed to classify TCGS participant status in MetS development. The models' performance was evaluated by 10-repeated 10-fold crossvalidation. Various assessment measures of sensitivity, specificity, classification accuracy, and area under the receiver operating characteristic curve (AUC-ROC) and AUC-precision-recall (AUC-PR) curves were used to compare the models.During the follow-up period, 50.38% of participants developed MetS. The groups were not similar in terms of baseline characteristics and risk variants. MetS was significantly associated with age, gender, schooling years, body mass index (BMI), and alternate alleles in all the risk variants, as indicated by LR. A comparison of accuracy, AUCROC, and AUC-PR metrics indicated that the regularization models outperformed LR. Regularized machine learning models provided comparable classification performances, whereas the aLASSO model was more parsimonious and selected fewer predictors.Regularized machine learning models provided more accurate and parsimonious MetS classifying models. These high-performing diagnostic models can lay the foundation for clinical decision support tools that use genetic and demographical variables to locate individuals at high risk for MetS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助辛勤绝山采纳,获得10
1秒前
2秒前
烟染关注了科研通微信公众号
2秒前
住在魔仙堡的鱼完成签到 ,获得积分10
2秒前
2秒前
听话的含羞草完成签到 ,获得积分10
3秒前
啦啦啦123完成签到,获得积分10
3秒前
5秒前
pure完成签到 ,获得积分10
6秒前
Ava应助哭泣的发卡采纳,获得10
6秒前
xiaoyuanbao1988完成签到,获得积分10
6秒前
7秒前
莫DX发布了新的文献求助20
8秒前
是小曹啊发布了新的文献求助10
8秒前
LiuXinping发布了新的文献求助10
9秒前
9秒前
冷酷莫言发布了新的文献求助10
9秒前
ding应助000采纳,获得10
10秒前
顺心道之发布了新的文献求助10
13秒前
Euuii完成签到 ,获得积分10
13秒前
14秒前
颜白发布了新的文献求助10
14秒前
ccm应助坚强煜城采纳,获得10
14秒前
annie发布了新的文献求助10
14秒前
14秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
15秒前
Jasper应助科研通管家采纳,获得10
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
15秒前
Li应助科研通管家采纳,获得150
15秒前
星辰大海应助科研通管家采纳,获得10
15秒前
15秒前
大个应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5075934
求助须知:如何正确求助?哪些是违规求助? 4295582
关于积分的说明 13384913
捐赠科研通 4117374
什么是DOI,文献DOI怎么找? 2254820
邀请新用户注册赠送积分活动 1259437
关于科研通互助平台的介绍 1192208