Customer Lifetime Value Prediction: Towards the Paradigm Shift of Recommender System Objectives

推荐系统 计算机科学 盈利能力指数 软件部署 机器学习 概率逻辑 协同过滤 期限(时间) 人工智能 收入 深度学习 数据科学 操作系统 量子力学 物理 会计 业务 经济 财务
作者
Chuhan Wu,Qinglin Jia,Zhenhua Dong,Ruiming Tang
标识
DOI:10.1145/3604915.3609499
摘要

The ultimate goal of recommender systems is satisfying users’ information needs in the long term. Despite the success of current recommendation techniques in targeting user interest, optimizing long-term user engagement and platform revenue is still challenging due to the restriction of optimization objectives such as clicks, ratings, and dwell time. Customer lifetime value (LTV) reflects the total monetary value of a customer to a business over the course of their relationship. Accurate LTV prediction can guide personalized service providers to optimize their marketing, sales, and service strategies to maximize customer retention, satisfaction, and profitability. However, the extreme sparsity, volatility, and randomness of consumption behaviors make LTV prediction rather intricate and challenging. In this tutorial, we give a detailed introduction to the key technologies and problems in LTV prediction. We present a systematic technique chronicle of LTV prediction over decades, including probabilistic models, traditional machine learning methods, and deep learning techniques. Based on this overview, we introduce several critical challenges in algorithm design, performance evaluation and system deployment from an industrial perspective, from which we derive potential directions for future exploration. From this tutorial, the RecSys community can gain a better understanding of the unique characteristics and challenges of LTV prediction, and it may serve as a catalyst to shift the focus of recommender systems from short-term targets to long-term ones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Arthur发布了新的文献求助30
3秒前
南卡完成签到,获得积分10
6秒前
满意外套完成签到,获得积分10
7秒前
阿腾发布了新的文献求助10
7秒前
10秒前
火星的雪完成签到 ,获得积分10
15秒前
安寒发布了新的文献求助10
17秒前
Marilyn完成签到,获得积分10
19秒前
谷策发布了新的文献求助10
20秒前
21秒前
21秒前
Owen应助会撒娇的雁易采纳,获得10
22秒前
欢喜的绝义完成签到 ,获得积分10
23秒前
yyd发布了新的文献求助30
24秒前
PhD发布了新的文献求助10
24秒前
安寒完成签到,获得积分10
25秒前
qiu发布了新的文献求助10
25秒前
李李完成签到 ,获得积分10
27秒前
现代书雪发布了新的文献求助10
27秒前
爱吃芒果果儿完成签到,获得积分10
28秒前
30秒前
英姑应助yangdan采纳,获得10
31秒前
31秒前
田様应助bamboo采纳,获得30
32秒前
田様应助科研通管家采纳,获得10
32秒前
32秒前
ICEBLUE应助科研通管家采纳,获得10
32秒前
爆爆应助科研通管家采纳,获得10
32秒前
科研通AI5应助科研通管家采纳,获得10
32秒前
CipherSage应助许安采纳,获得10
32秒前
33秒前
脑洞疼应助科研通管家采纳,获得10
33秒前
33秒前
晨雾完成签到,获得积分10
34秒前
Evalina发布了新的文献求助10
35秒前
38秒前
39秒前
BZ应助开心果子采纳,获得10
40秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3823575
求助须知:如何正确求助?哪些是违规求助? 3365926
关于积分的说明 10438369
捐赠科研通 3085092
什么是DOI,文献DOI怎么找? 1697152
邀请新用户注册赠送积分活动 816235
科研通“疑难数据库(出版商)”最低求助积分说明 769462