Design Rule Hidden from The Eye in S/N‐Bridged Ancillary Ligands for Copper(I) Complexes Applied to Light‐Emitting Electrochemical Cells

电化学 配体(生物化学) 喹啉 材料科学 极化率 轨道能级差 电化学电池 溶剂变色 化学 物理化学 有机化学 分子 电极 生物化学 受体
作者
Ginevra Giobbio,Luca M. Cavinato,Elisa Fresta,Anaïs Montrieul,Gilbert Umuhire Mahoro,Jean‐François Lohier,Jean‐Luc Renaud,Mathieu Linares,Sylvain Gaillard,Rubén D. Costa
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:33 (50)
标识
DOI:10.1002/adfm.202304668
摘要

Abstract Enhancing low‐energy emitting Cu(I)‐ionic transition metal complexes (iTMCs) light‐emitting electrochemical cells (LECs) is of utmost importance towards Cu(I)‐iTMC‐based white‐emitting LECs. Here, the ancillary ligand design includes (i) extension of π‐systems and (ii) insertion of S‐bridge between heteroaromatics rings. This led to two novel heteroleptic Cu(I)‐iTMCs: 2‐(pyridin‐2‐yl‐l2‐azanyl)quinoline ( CuN2 ) and 2‐(naphthalen‐2‐ylthio)quinoline ( CuS2 ) as N^N and bis[(2‐diphenylphosphino)phenyl] ether as P^P, exhibiting improved photoluminescence quantum yields ( ϕ ) and thermally activated delayed fluorescence processes compared to their reference Cu(I)‐iTMCs: di(pyridin‐2‐yl)‐l2‐azane ( CuN1 ) and di(pyridin‐2‐yl)sulfane ( CuS1 ). Despite CuS2 stands out with the highest ϕ (38% vs 17 / 14 / 1% for CuN1 / CuN2 / CuS1 ), only CuN2 ‐LECs show the expected enhanced performance (0.35 cd A −1 at luminance of 117 cd m −2 ) compared to CuN1 ‐LECs (0.02 cd A −1 at6 cd m −2 ), while CuS2 ‐LECs feature low performances (0.04 cd A −1 at 10 cd m −2 ). This suggests that conventional chemical design rules are not effective towards enhancing device performance. Herein, nonconventional multivariate statistical analysis and electrochemical impedance spectroscopy studies allow to rationalize the mismatch between chemical design and device performance bringing to light a hidden design rule: polarizability of the ancillary ligand is key for an efficient Cu(I)‐iTMC‐LECs. All‐in‐all, this study provides fresh insights for the design of Cu‐iTMCs fueling research on sustainable ion‐based lighting sources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助qq采纳,获得10
刚刚
刚刚
xx完成签到,获得积分10
刚刚
tcmlida完成签到,获得积分10
1秒前
历史真相发布了新的文献求助10
1秒前
852应助ws采纳,获得10
1秒前
失眠醉易应助Vera采纳,获得20
1秒前
joysa完成签到,获得积分10
1秒前
遇见完成签到 ,获得积分10
2秒前
笨笨小刺猬完成签到,获得积分10
2秒前
科研通AI2S应助旧梦采纳,获得10
2秒前
why完成签到,获得积分10
3秒前
RayLam完成签到,获得积分10
3秒前
3秒前
CChi0923完成签到,获得积分10
5秒前
谨慎的友安完成签到 ,获得积分10
5秒前
热泪盈眶发布了新的文献求助20
6秒前
feiCheung发布了新的文献求助10
6秒前
树袋熊完成签到,获得积分10
7秒前
wanci应助up采纳,获得10
7秒前
7秒前
11关注了科研通微信公众号
7秒前
King完成签到,获得积分10
8秒前
眼睛大的电脑完成签到 ,获得积分10
9秒前
vera完成签到,获得积分10
9秒前
懒YY捉小J完成签到 ,获得积分10
10秒前
Adrenaline发布了新的文献求助10
10秒前
MA完成签到 ,获得积分10
10秒前
独特秋双完成签到,获得积分10
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
雾影觅光完成签到,获得积分10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
Orange应助科研通管家采纳,获得10
12秒前
呼呼完成签到,获得积分10
12秒前
小马甲应助科研通管家采纳,获得10
12秒前
啦啦啦完成签到,获得积分10
12秒前
12秒前
12秒前
大个应助科研通管家采纳,获得10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792706
求助须知:如何正确求助?哪些是违规求助? 3337130
关于积分的说明 10283656
捐赠科研通 3054010
什么是DOI,文献DOI怎么找? 1675746
邀请新用户注册赠送积分活动 803768
科研通“疑难数据库(出版商)”最低求助积分说明 761533