A method of user recruitment and adaptation degree improvement via community collaboration in sparse mobile crowdsensing systems

计算机科学 感知 适应(眼睛) 约束(计算机辅助设计) 任务(项目管理) 自编码 矩阵分解 人工智能 机器学习 数据挖掘 深度学习 特征向量 生物 光学 物理 工程类 机械工程 经济 神经科学 管理 量子力学
作者
Jian Wang,Xiuying Zhan,Yuping Yan,Guosheng Zhao
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:128: 107464-107464
标识
DOI:10.1016/j.engappai.2023.107464
摘要

The task allocation problem in sparse mobile crowdsensing is simplified as a subarea selection problem. However, the lack of participants in some high-value subareas leads to the low quality of the final inferred sensing map. To solve this problem, a method of user recruitment and adaptation degree improvement via community collaboration is proposed. Firstly, the adjacency matrix is constructed based on the social relationship of the participants, and then all the participants are classified into communities by the non-negative matrix factorization method of deep autoencoder-like; secondly, the perception platform matches the perception tasks with the centroids of the perception communities based on the different eigenvalues of the classified perception communities and the location characteristics of the perception tasks. After the matching is completed, some participants in the matched communities will be selected to complete the perceptual tasks under the constraint of perceptual cost; finally, the perceptual data provided by the participants is used to obtain the complete perceptual map using the compressed perceptual algorithm. We designed this user recruitment method to obtain high-quality sensing data by recruiting a small number of users after community classification based on their social relationships and then accurately inferring the entire perceptual map. The experimental results based on the Gowalla and U-Air datasets show that the user recruitment method proposed in this paper can infer accurate data with fewer sensing areas, which is significantly better than other comparison methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HEIKU应助等待的剑身采纳,获得10
1秒前
1秒前
李爱国应助wbb采纳,获得10
1秒前
接心软审稿人完成签到 ,获得积分10
2秒前
嘟嘟豆806完成签到 ,获得积分10
4秒前
za==完成签到 ,获得积分10
4秒前
zpb发布了新的文献求助30
5秒前
凯凯搞科研完成签到,获得积分10
6秒前
鸣蜩阿六完成签到,获得积分10
6秒前
一一发布了新的文献求助10
7秒前
材1发布了新的文献求助20
7秒前
9秒前
日暖月寒完成签到,获得积分10
9秒前
机智雪糕完成签到,获得积分10
10秒前
深情安青应助小半个菠萝采纳,获得10
11秒前
追寻皮卡丘完成签到,获得积分10
11秒前
12秒前
科研通AI5应助qi采纳,获得10
12秒前
wbb发布了新的文献求助10
13秒前
激昂的如柏完成签到,获得积分10
13秒前
zlw完成签到 ,获得积分10
14秒前
15秒前
研友_Z7Xdl8完成签到,获得积分10
15秒前
16秒前
xiaoyue完成签到 ,获得积分10
16秒前
17秒前
hanzhipad应助破月采纳,获得30
17秒前
wbb完成签到,获得积分10
18秒前
18秒前
19秒前
研友_VZG7GZ应助烂漫的从彤采纳,获得10
19秒前
斯文败类应助ohxixixi采纳,获得10
21秒前
22秒前
22秒前
23秒前
23秒前
23秒前
整齐雁芙完成签到,获得积分10
23秒前
23秒前
24秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843657
求助须知:如何正确求助?哪些是违规求助? 3385947
关于积分的说明 10543274
捐赠科研通 3106748
什么是DOI,文献DOI怎么找? 1711147
邀请新用户注册赠送积分活动 823921
科研通“疑难数据库(出版商)”最低求助积分说明 774390