已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Evaluation of different classification methods using electronic nose data to diagnose sarcoidosis

电子鼻 人工智能 降维 特征选择 分类器(UML) 随机森林 计算机科学 模式识别(心理学) 机器学习 维数之咒 结节病 随机子空间法 数据挖掘 医学 病理
作者
Iris G. van der Sar,Nynke van Jaarsveld,Imme A Spiekerman,Floor J Toxopeus,Quint L Langens,Marlies Wijsenbeek,Justin Dauwels,Catharina C. Moor
出处
期刊:Journal of Breath Research [IOP Publishing]
卷期号:17 (4): 047104-047104 被引量:7
标识
DOI:10.1088/1752-7163/acf1bf
摘要

Abstract Electronic nose (eNose) technology is an emerging diagnostic application, using artificial intelligence to classify human breath patterns. These patterns can be used to diagnose medical conditions. Sarcoidosis is an often difficult to diagnose disease, as no standard procedure or conclusive test exists. An accurate diagnostic model based on eNose data could therefore be helpful in clinical decision-making. The aim of this paper is to evaluate the performance of various dimensionality reduction methods and classifiers in order to design an accurate diagnostic model for sarcoidosis. Various methods of dimensionality reduction and multiple hyperparameter optimised classifiers were tested and cross-validated on a dataset of patients with pulmonary sarcoidosis ( n = 224) and other interstitial lung disease ( n = 317). Best performing methods were selected to create a model to diagnose patients with sarcoidosis. Nested cross-validation was applied to calculate the overall diagnostic performance. A classification model with feature selection and random forest (RF) classifier showed the highest accuracy. The overall diagnostic performance resulted in an accuracy of 87.1% and area-under-the-curve of 91.2%. After comparing different dimensionality reduction methods and classifiers, a highly accurate model to diagnose a patient with sarcoidosis using eNose data was created. The RF classifier and feature selection showed the best performance. The presented systematic approach could also be applied to other eNose datasets to compare methods and select the optimal diagnostic model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sharon关注了科研通微信公众号
1秒前
1秒前
DQ发布了新的文献求助10
3秒前
打打应助高无怨采纳,获得20
4秒前
5秒前
斯文败类应助孙靖博采纳,获得30
5秒前
香蕉觅云应助Qiaoguliang采纳,获得10
6秒前
浮游应助落日出逃采纳,获得10
7秒前
似水流年发布了新的文献求助10
7秒前
8秒前
8秒前
过眼云烟发布了新的文献求助10
8秒前
小王完成签到,获得积分20
8秒前
呆萌的雁桃完成签到,获得积分10
8秒前
9秒前
孔夫子发布了新的文献求助10
11秒前
田様应助顺利的源智采纳,获得10
11秒前
11秒前
乐乐应助炽天使采纳,获得10
12秒前
12秒前
halo1004发布了新的文献求助10
12秒前
顺心的傲柔完成签到,获得积分10
14秒前
啊哦发布了新的文献求助10
14秒前
kannar完成签到,获得积分10
15秒前
17秒前
亻鱼发布了新的文献求助10
17秒前
19秒前
20秒前
在水一方应助WU采纳,获得10
20秒前
十三完成签到 ,获得积分10
20秒前
20秒前
21秒前
星辰大海应助chc123采纳,获得10
22秒前
Qiaoguliang发布了新的文献求助10
22秒前
22秒前
高无怨发布了新的文献求助20
22秒前
23秒前
23秒前
球球了完成签到,获得积分20
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644201
求助须知:如何正确求助?哪些是违规求助? 4763190
关于积分的说明 15024035
捐赠科研通 4802432
什么是DOI,文献DOI怎么找? 2567442
邀请新用户注册赠送积分活动 1525189
关于科研通互助平台的介绍 1484663