最小边界框
跳跃式监视
目标检测
基本事实
计算机科学
人工智能
探测器
熵(时间箭头)
概化理论
回归
模式识别(心理学)
算法
数学
统计
图像(数学)
量子力学
物理
电信
作者
Huixin Sun,Baochang Zhang,Yanjing Li,Xianbin Cao
出处
期刊:Cornell University - arXiv
日期:2023-03-03
被引量:1
标识
DOI:10.48550/arxiv.2303.01803
摘要
Despite advances in generic object detection, there remains a performance gap in detecting small objects compared to normal-scale objects. We reveal that conventional object localization methods suffer from gradient instability in small objects due to sharper loss curvature, leading to a convergence challenge. To address the issue, we propose Uncertainty-Aware Gradient Stabilization (UGS), a framework that reformulates object localization as a classification task to stabilize gradients. UGS quantizes continuous labels into interval non-uniform discrete representations. Under a classification-based objective, the localization branch generates bounded and confidence-driven gradients, mitigating instability. Furthermore, UGS integrates an uncertainty minimization (UM) loss that reduces prediction variance and an uncertainty-guided refinement (UR) module that identifies and refines high-uncertainty regions via perturbations. Evaluated on four benchmarks, UGS consistently improves anchor-based, anchor-free, and leading small object detectors. Especially, UGS enhances DINO-5scale by 2.6 AP on VisDrone, surpassing previous state-of-the-art results.
科研通智能强力驱动
Strongly Powered by AbleSci AI