A Novel Day-to-Night Obstacle Detection Method for Excavators Based on Image Enhancement and Multisensor Fusion

人工智能 计算机视觉 挖掘机 计算机科学 行人检测 目标检测 RGB颜色模型 障碍物 图像融合 图像传感器 图像分辨率 传感器融合 图像(数学) 行人 模式识别(心理学) 工程类 地理 运输工程 机械工程 考古
作者
Meiyuan Zou,Jiajie Yu,Yong Lv,Bo Lu,Wenzheng Chi,Lining Sun
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (10): 10825-10835 被引量:11
标识
DOI:10.1109/jsen.2023.3254588
摘要

Traditional excavator driving relies only on manual observation, resulting in increased hazards in unstructured environments. When the excavator works in a relatively dark environment, there will be potential risks for both the driver and the surrounding pedestrians. In order to address this issue, this study takes the advantage of three different sensors, including infrared cameras, RGB cameras, and Light detection and ranging (LiDAR) sensors, and proposes a novel day-to-night obstacle detection approach by fusing data from multiple sensors. For the dark environment at night, the infrared camera is adopted for the detection task. However, compared with RGB cameras, the infrared camera usually has lower resolutions, making it difficult to be directly applied for obstacle detection. Therefore, an image enhancement processing method for low-resolution infrared images is developed based on the Difference of Gaussian (DoG). Then, an image recognition method based on YOLO-v5 is proposed to detect images after image enhancement. Finally, a multisensor fusion method is suggested to identify the semantic information and 3-D coordinates of objects. Experimental studies are carried out to assess image quality and the effectiveness of various object recognition tasks. The results of the experiments demonstrate that our method is capable of not only accurately extracting pedestrian position information from a complicated background environment and realizing timely pedestrian alarms but also maintaining detection performance in an excavator working environment at night.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏苏诺诺2023完成签到,获得积分10
刚刚
刚刚
fddd完成签到,获得积分20
刚刚
tt发布了新的文献求助10
1秒前
活泼又晴给活泼又晴的求助进行了留言
1秒前
1秒前
kangnakangna完成签到,获得积分10
2秒前
2秒前
WatsonJiang完成签到,获得积分10
2秒前
2秒前
等你出现完成签到,获得积分20
3秒前
3秒前
小茹发布了新的文献求助10
3秒前
深情安青应助隐形荟采纳,获得10
3秒前
丽丽发布了新的文献求助10
4秒前
orixero应助lc采纳,获得50
5秒前
唐诗鑫发布了新的文献求助10
5秒前
CipherSage应助Muller采纳,获得10
5秒前
王帅坤完成签到,获得积分10
6秒前
6秒前
TL完成签到,获得积分10
7秒前
7秒前
勤劳的逍遥完成签到 ,获得积分10
7秒前
7秒前
duoduo7发布了新的文献求助10
7秒前
celine发布了新的文献求助10
7秒前
8秒前
善学以致用应助跋扈采纳,获得10
9秒前
等你出现发布了新的文献求助10
9秒前
whisper关注了科研通微信公众号
9秒前
CipherSage应助tyzhet采纳,获得10
10秒前
烟花应助jjj采纳,获得10
10秒前
老迟到的荔枝应助王春起采纳,获得10
10秒前
10秒前
10秒前
chen发布了新的文献求助10
11秒前
guoguo发布了新的文献求助10
12秒前
12秒前
13秒前
orixero应助乐观短靴采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 800
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4384951
求助须知:如何正确求助?哪些是违规求助? 3877937
关于积分的说明 12080577
捐赠科研通 3521425
什么是DOI,文献DOI怎么找? 1932484
邀请新用户注册赠送积分活动 973703
科研通“疑难数据库(出版商)”最低求助积分说明 871939