Deep Learning-Driven Glaucoma Medication Bottle Recognition: A Multilingual Clinical Validation Study in Patients with Impaired Vision

青光眼 瓶子 医学 深度学习 人工智能 验光服务 眼科 心理学 计算机科学 工程类 机械工程
作者
Aidin Spina,Christopher D. Yang,Ayush Jain,Christine Ha,Lauren E. Chen,Philina Yee,Ken Lin
出处
期刊:Ophthalmology science [Elsevier BV]
卷期号:: 100758-100758
标识
DOI:10.1016/j.xops.2025.100758
摘要

To clinically validate a convolutional neural network (CNN)-based Android smartphone app in the identification of topical glaucoma medications for patients with glaucoma and impaired vision. Nonrandomized prospective crossover study. The study population included a total of 20 non-English-speaking (11 Spanish and 9 Vietnamese) and 21 English-speaking patients who presented to an academic glaucoma clinic from December 2023 through September 2024. Patients with poor vision were selected on the basis of visual acuity (VA) of 20/70 or worse in 1 eye as per the California Department of Motor Vehicles' driver's license screening standard. Enrolled subjects participated in a medication identification activity in which they identified a set of 6 topical glaucoma medications presented in a randomized order. Subjects first identified half of the medications without the CNN-based app. They then identified the remaining half of the medications with the app. Responses to a standardized ease-of-use survey were collected before and after using the app. Primary quantitative outcomes from the medication identification activity were accuracy and time. Primary qualitative outcomes from the ease-of-use survey were subjective ratings of ease of smartphone app use. The CNN-based mobile app achieved a mean average precision of 98.8% and recall of 97.2%. Identification accuracy significantly improved from 27.6% without the app to 99.2% with the app across all participants, with no significant change in identification time. This observed improvement in accuracy was similar among non-English-speaking (71.6%) and English-speaking (71.4%) participants. The odds ratio (OR) for identification accuracy with the app was 319.353 (P < 0.001), with substantial improvement in both non-English-speaking (OR = 162.779, P < 0.001) and English-speaking (no applicable OR given 100% identification accuracy) participants. Survey data indicated that 81% of English speakers and 30% of non-English speakers found the app "very easy" to use, with the overall ease of use strongly associating with improved accuracy. The CNN-based mobile app significantly improves medication identification accuracy in patients with glaucomatous vision loss without increasing the time to identification. This tool has the potential to enhance adherence in both English- and non-English-speaking populations and offers a practical adjunct to daily medication management for patients with glaucoma and low VA. Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助yelaikuhun74采纳,获得10
1秒前
谷粱靖发布了新的文献求助10
2秒前
yuxin完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助100
4秒前
cera完成签到,获得积分10
4秒前
Painkiller_完成签到,获得积分10
4秒前
4秒前
5秒前
星辰大海应助无限数据线采纳,获得10
8秒前
粑粑完成签到,获得积分20
8秒前
lll发布了新的文献求助20
9秒前
火星上的沛春完成签到,获得积分10
10秒前
喜悦一德发布了新的文献求助10
12秒前
共享精神应助Su采纳,获得10
12秒前
13秒前
谷粱靖完成签到,获得积分10
13秒前
羞涩的问兰完成签到,获得积分10
14秒前
zz完成签到,获得积分10
14秒前
17秒前
17秒前
小蘑菇应助zz采纳,获得10
17秒前
18秒前
hyominhsu发布了新的文献求助10
18秒前
20秒前
meixinhu完成签到,获得积分10
20秒前
20秒前
20秒前
20秒前
浮游应助番茄炒鸡蛋采纳,获得10
20秒前
略略略发布了新的文献求助10
21秒前
土土完成签到 ,获得积分20
22秒前
深情的青易完成签到,获得积分10
22秒前
JN发布了新的文献求助30
23秒前
顺利毕业发布了新的文献求助10
23秒前
www发布了新的文献求助10
23秒前
丘比特应助小冉采纳,获得10
23秒前
金金完成签到,获得积分20
24秒前
25秒前
浮游应助ValarMorghulis采纳,获得20
25秒前
233发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4676696
求助须知:如何正确求助?哪些是违规求助? 4054367
关于积分的说明 12537464
捐赠科研通 3748537
什么是DOI,文献DOI怎么找? 2070475
邀请新用户注册赠送积分活动 1099481
科研通“疑难数据库(出版商)”最低求助积分说明 979166