Optimized Protein–Excipient Interactions in the Martini 3 Force Field

赋形剂 力场(虚构) 领域(数学) 化学 计算机科学 色谱法 数学 人工智能 纯数学
作者
Tobias M. Prass,Kresten Lindorff‐Larsen,Patrick Garidel,Michaela Blech,Lars V. Schäfer
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c02338
摘要

The high doses of drugs required for biotherapeutics, such as monoclonal antibodies (mAbs), and the small volumes that can be administered to patients by subcutaneous injections pose challenges due to high-concentration formulations. The addition of excipients, such as arginine and glutamate, to high-concentration protein formulations can increase solubility and reduce the tendency of protein particle formation. Molecular dynamics (MD) simulations can provide microscopic insights into the mode of action of excipients in mAb formulations but require large system sizes and long time scales that are currently beyond reach at the fully atomistic level. Computationally efficient coarse-grained models such as the Martini 3 force field can tackle this challenge but require careful parametrization, testing, and validation. This study extends the popular Martini 3 force field toward realistic protein–excipient interactions of arginine and glutamate excipients, using the Fab domains of the therapeutic mAbs trastuzumab and omalizumab as model systems. A novel all-atom to coarse-grained mapping of the amino acid excipients is introduced, which explicitly captures the zwitterionic character of the backbone. The Fab–excipient interactions of arginine and glutamate are characterized concerning molecular contacts with the Fabs at the single-residue level. The Martini 3 simulations are compared with results from all-atom simulations as a reference. Our findings reveal an overestimation of Fab–excipient contacts with the default interaction parameters of Martini 3, suggesting a too strong attraction between protein residues and excipients. Therefore, we reparametrized the protein–excipient interaction parameters in Martini 3 against all-atom simulations. The excipient interactions obtained with the new Martini 3 mapping and Lennard-Jones (LJ) interaction parameters, coined Martini 3-exc, agree closely with the all-atom reference data. This work presents an improved parameter set for mAb-arginine and mAb-glutamate interactions in the Martini 3 coarse-grained force field, a key step toward large-scale coarse-grained MD simulations of high-concentration mAb formulations and the stabilizing effects of excipients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陀思妥耶夫斯基完成签到,获得积分10
1秒前
孔绍君关注了科研通微信公众号
2秒前
万能图书馆应助秋夜白采纳,获得10
2秒前
6秒前
mphla完成签到,获得积分10
13秒前
13秒前
下雨这天完成签到,获得积分10
14秒前
15秒前
pure123发布了新的文献求助20
16秒前
科研通AI5应助kelly采纳,获得10
17秒前
17秒前
18秒前
熊熊出击发布了新的文献求助10
19秒前
鱼不存在发布了新的文献求助40
20秒前
21秒前
cjyyy发布了新的文献求助10
22秒前
风枞完成签到 ,获得积分10
22秒前
26秒前
kjh完成签到,获得积分10
26秒前
29秒前
kelly发布了新的文献求助10
31秒前
文天完成签到,获得积分10
31秒前
32秒前
Lucas应助加快步伐采纳,获得10
33秒前
pure123完成签到,获得积分10
34秒前
alooof发布了新的文献求助10
34秒前
chhzz完成签到 ,获得积分10
35秒前
77发布了新的文献求助10
38秒前
完美世界应助cjyyy采纳,获得10
41秒前
41秒前
43秒前
nwpuwangbo完成签到,获得积分10
43秒前
今后应助348847119采纳,获得10
43秒前
加快步伐发布了新的文献求助10
44秒前
隐形曼青应助啦啦啦采纳,获得10
45秒前
chenchen完成签到 ,获得积分10
45秒前
111发布了新的文献求助10
47秒前
wanci应助虚拟的荔枝采纳,获得10
56秒前
57秒前
111完成签到,获得积分10
59秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777347
求助须知:如何正确求助?哪些是违规求助? 3322714
关于积分的说明 10211237
捐赠科研通 3038044
什么是DOI,文献DOI怎么找? 1667051
邀请新用户注册赠送积分活动 797952
科研通“疑难数据库(出版商)”最低求助积分说明 758098