Artificial Intelligence in Breast US Diagnosis and Report Generation

麦克内马尔试验 医学 乳房成像 考试(生物学) 双雷达 医学物理学 放射科 人工智能 乳腺癌 乳腺摄影术 计算机科学 统计 内科学 古生物学 数学 癌症 生物
作者
Jian Wang,Hongtian Tian,Xin Yang,Huaiyu Wu,Xiliang Zhu,Rusi Chen,Allan Chang,Ya‐Fang Chen,Haoran Dou,Ruobing Huang,Jun Cheng,Yongsong Zhou,Rui Gao,Keen Yang,Guoqiu Li,Jing Chen,Dong Ni,Fajin Dong,Jinfeng Xu,Ning Gu
出处
期刊:Radiology [Radiological Society of North America]
标识
DOI:10.1148/ryai.240625
摘要

“Just Accepted” papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To develop and evaluate an artificial intelligence (AI) system for generating breast ultrasound (BUS) reports. Materials and Methods This retrospective study included 104,364 cases from three hospitals (January 2020–December 2022). The AI system was trained on 82,896 cases, validated on 10,385 cases, and tested on an internal set (10,383 cases) and two external sets (300 and 400 cases). Under blind review, three senior radiologists (> 10 years of experience) evaluated AI-generated reports and those written by one midlevel radiologist (7 years of experience), as well as reports from three junior radiologists (2–3 years of experience) with and without AI assistance. The primary outcomes included the acceptance rates of Breast Imaging Reporting and Data System (BI-RADS) categories and lesion characteristics. Statistical analysis included one-sided and two-sided McNemar tests for non-inferiority and significance testing. Results In external test set 1 (300 cases), the midlevel radiologist and AI system achieved BI-RADS acceptance rates of 95.00% [285/300] versus 92.33% [277/300] ( P < .001; non-inferiority test with a prespecified margin of 10%). In external test set 2 (400 cases), three junior radiologists had BI-RADS acceptance rates of 87.00% [348/400] versus 90.75% [363/400] ( P = .06), 86.50% [346/400] versus 92.00% [368/400] ( P = .007), and 84.75% [339/400] versus 90.25% [361/400] ( P = .02) with and without AI assistance, respectively. Conclusion The AI system performed comparably to a midlevel radiologist and aided junior radiologists in BI-RADS classification. ©RSNA, 2025
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助欧阳铭采纳,获得10
1秒前
芝士大王完成签到 ,获得积分10
1秒前
astronautadam完成签到,获得积分10
4秒前
Philip发布了新的文献求助10
4秒前
LINYZ发布了新的文献求助10
5秒前
大哥小钊狗完成签到,获得积分0
6秒前
7秒前
斯文败类应助niwawa采纳,获得10
7秒前
8秒前
孟风尘发布了新的文献求助10
9秒前
10秒前
科研通AI5应助ziyue采纳,获得10
11秒前
SSL123_完成签到,获得积分10
11秒前
真实的乌龟完成签到 ,获得积分10
12秒前
13秒前
14秒前
15秒前
16秒前
科研通AI5应助温柔沛槐采纳,获得10
17秒前
1234发布了新的文献求助10
18秒前
不羁发布了新的文献求助10
19秒前
能干大树发布了新的文献求助10
20秒前
YYY完成签到,获得积分10
22秒前
孟风尘完成签到,获得积分10
22秒前
核桃发布了新的文献求助30
23秒前
23秒前
24秒前
上官若男应助一颗钵仔糕采纳,获得10
24秒前
猫屿发布了新的文献求助20
25秒前
YOLO完成签到,获得积分10
25秒前
yigedaxainren应助王子采纳,获得10
27秒前
阿九完成签到,获得积分10
28秒前
李健的粉丝团团长应助1234采纳,获得10
29秒前
JamesPei应助汉堡怪兽采纳,获得10
29秒前
FDY发布了新的文献求助80
29秒前
mie发布了新的文献求助10
30秒前
静香发布了新的文献求助10
30秒前
依古比古完成签到,获得积分10
30秒前
34秒前
隐形曼青应助小肉包采纳,获得30
35秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4466711
求助须知:如何正确求助?哪些是违规求助? 3928333
关于积分的说明 12189987
捐赠科研通 3581609
什么是DOI,文献DOI怎么找? 1968152
邀请新用户注册赠送积分活动 1006595
科研通“疑难数据库(出版商)”最低求助积分说明 900714