Artificial Intelligence in Breast US Diagnosis and Report Generation

麦克内马尔试验 医学 乳房成像 考试(生物学) 双雷达 医学物理学 放射科 人工智能 乳腺癌 乳腺摄影术 计算机科学 统计 内科学 古生物学 数学 癌症 生物
作者
Jian Wang,Hongtian Tian,Xin Yang,Huaiyu Wu,Xiliang Zhu,Rusi Chen,Allan Chang,Ya‐Fang Chen,Haoran Dou,Ruobing Huang,Jun Cheng,Yongsong Zhou,Rui Gao,Keen Yang,Guoqiu Li,Jing Chen,Dong Ni,Fajin Dong,Jinfeng Xu,Ning Gu
出处
期刊:Radiology [Radiological Society of North America]
被引量:1
标识
DOI:10.1148/ryai.240625
摘要

“Just Accepted” papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To develop and evaluate an artificial intelligence (AI) system for generating breast ultrasound (BUS) reports. Materials and Methods This retrospective study included 104,364 cases from three hospitals (January 2020–December 2022). The AI system was trained on 82,896 cases, validated on 10,385 cases, and tested on an internal set (10,383 cases) and two external sets (300 and 400 cases). Under blind review, three senior radiologists (> 10 years of experience) evaluated AI-generated reports and those written by one midlevel radiologist (7 years of experience), as well as reports from three junior radiologists (2–3 years of experience) with and without AI assistance. The primary outcomes included the acceptance rates of Breast Imaging Reporting and Data System (BI-RADS) categories and lesion characteristics. Statistical analysis included one-sided and two-sided McNemar tests for non-inferiority and significance testing. Results In external test set 1 (300 cases), the midlevel radiologist and AI system achieved BI-RADS acceptance rates of 95.00% [285/300] versus 92.33% [277/300] ( P < .001; non-inferiority test with a prespecified margin of 10%). In external test set 2 (400 cases), three junior radiologists had BI-RADS acceptance rates of 87.00% [348/400] versus 90.75% [363/400] ( P = .06), 86.50% [346/400] versus 92.00% [368/400] ( P = .007), and 84.75% [339/400] versus 90.25% [361/400] ( P = .02) with and without AI assistance, respectively. Conclusion The AI system performed comparably to a midlevel radiologist and aided junior radiologists in BI-RADS classification. ©RSNA, 2025
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李嘉图发布了新的文献求助10
刚刚
sssun发布了新的文献求助10
刚刚
traminer发布了新的文献求助30
刚刚
uu发布了新的文献求助10
刚刚
刚刚
权志龙完成签到,获得积分10
1秒前
光亮代玉完成签到,获得积分10
1秒前
桐桐应助zhanghl采纳,获得10
2秒前
kyrie发布了新的文献求助10
2秒前
3秒前
科研通AI5应助happykk采纳,获得10
3秒前
完美世界应助wxd采纳,获得10
4秒前
mins发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
浮游应助ZHU采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
小马甲应助晴清采纳,获得10
7秒前
7秒前
唯美完成签到,获得积分10
7秒前
8秒前
9秒前
Hoshiiii发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
11秒前
七七发布了新的文献求助10
11秒前
11秒前
李十七发布了新的文献求助10
12秒前
浮游应助kyrie采纳,获得10
12秒前
lyy66964193完成签到,获得积分10
12秒前
13秒前
Vaibhav发布了新的文献求助10
13秒前
yx完成签到,获得积分10
13秒前
鹅鹅完成签到 ,获得积分10
13秒前
14秒前
喜悦海莲发布了新的文献求助40
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4991587
求助须知:如何正确求助?哪些是违规求助? 4239973
关于积分的说明 13208816
捐赠科研通 4034869
什么是DOI,文献DOI怎么找? 2207546
邀请新用户注册赠送积分活动 1218530
关于科研通互助平台的介绍 1136987