Voxel-level radiomics and deep learning for predicting pathologic complete response in esophageal squamous cell carcinoma after neoadjuvant immunotherapy and chemotherapy

无线电技术 医学 食管鳞状细胞癌 人工智能 肿瘤科 深度学习 接收机工作特性 体素 曲线下面积 内科学 机器学习 放射科 计算机科学
作者
Zhen Zhang,Tianchen Luo,Yan Meng,Haixia Shen,Kaiyi Tao,Jian Zeng,Jingping Yuan,Min Fang,Jianming Zheng,Iñigo Bermejo,André Dekker,Dirk De Ruysscher,Leonard Wee,Wencheng Zhang,Youhua Jiang,Yongling Ji
出处
期刊:Journal for ImmunoTherapy of Cancer [BMJ]
卷期号:13 (3): e011149-e011149 被引量:3
标识
DOI:10.1136/jitc-2024-011149
摘要

Background Accurate prediction of pathologic complete response (pCR) following neoadjuvant immunotherapy combined with chemotherapy (nICT) is crucial for tailoring patient care in esophageal squamous cell carcinoma (ESCC). This study aimed to develop and validate a deep learning model using a novel voxel-level radiomics approach to predict pCR based on preoperative CT images. Methods In this multicenter, retrospective study, 741 patients with ESCC who underwent nICT followed by radical esophagectomy were enrolled from three institutions. Patients from one center were divided into a training set (469 patients) and an internal validation set (118 patients) while the data from the other two centers was used as external validation sets (120 and 34 patients, respectively). The deep learning model, Vision-Mamba, integrated voxel-level radiomics feature maps and CT images for pCR prediction. Additionally, other commonly used deep learning models, including 3D-ResNet and Vision Transformer, as well as traditional radiomics methods, were developed for comparison. Model performance was evaluated using accuracy, area under the curve (AUC), sensitivity, specificity, and prognostic stratification capabilities. The SHapley Additive exPlanations analysis was employed to interpret the model’s predictions. Results The Vision-Mamba model demonstrated robust predictive performance in the training set (accuracy: 0.89, AUC: 0.91, sensitivity: 0.82, specificity: 0.92) and validation sets (accuracy: 0.83–0.91, AUC: 0.83–0.92, sensitivity: 0.73–0.94, specificity: 0.84–1.0). The model outperformed other deep learning models and traditional radiomics methods. The model’s ability to stratify patients into high and low-risk groups was validated, showing superior prognostic stratification compared with traditional methods. SHAP provided quantitative and visual model interpretation. Conclusions We present a voxel-level radiomics-based deep learning model to predict pCR to neoadjuvant immunotherapy combined with chemotherapy based on pretreatment diagnostic CT images with high accuracy and robustness. This model could provide a promising tool for individualized management of patients with ESCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王婷发布了新的文献求助10
1秒前
寻找论文发布了新的文献求助10
1秒前
贺光萌发布了新的文献求助10
3秒前
鸡蛋灌饼完成签到,获得积分10
3秒前
123稻稻人完成签到 ,获得积分10
3秒前
4秒前
内向妙梦发布了新的文献求助10
5秒前
慕青应助一念初见采纳,获得10
5秒前
轻云触月完成签到 ,获得积分10
7秒前
7秒前
100完成签到,获得积分0
8秒前
杰杰大叔完成签到,获得积分20
9秒前
YM完成签到,获得积分10
10秒前
11秒前
11秒前
IFYK完成签到,获得积分10
11秒前
12秒前
李大帅完成签到,获得积分10
13秒前
14秒前
15秒前
菲菲宋发布了新的文献求助10
15秒前
潇洒的盼烟完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
Orange应助咿呀采纳,获得10
17秒前
Gengar完成签到 ,获得积分10
19秒前
黎明发布了新的文献求助10
19秒前
NexusExplorer应助王婷采纳,获得10
21秒前
小葫芦完成签到 ,获得积分10
23秒前
小蘑菇应助清荔采纳,获得10
24秒前
共享精神应助小坤不慌采纳,获得10
24秒前
研友_VZG7GZ应助yyy采纳,获得10
24秒前
cassie完成签到,获得积分10
25秒前
25秒前
25秒前
辛勤的小蜜蜂完成签到 ,获得积分10
25秒前
27秒前
WMR完成签到,获得积分10
28秒前
Orange应助唠叨的凌雪采纳,获得10
30秒前
30秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4855566
求助须知:如何正确求助?哪些是违规求助? 4152433
关于积分的说明 12868536
捐赠科研通 3902242
什么是DOI,文献DOI怎么找? 2144120
邀请新用户注册赠送积分活动 1163753
关于科研通互助平台的介绍 1064357