Voxel-level radiomics and deep learning for predicting pathologic complete response in esophageal squamous cell carcinoma after neoadjuvant immunotherapy and chemotherapy

无线电技术 医学 食管鳞状细胞癌 人工智能 肿瘤科 深度学习 接收机工作特性 体素 曲线下面积 内科学 机器学习 放射科 计算机科学
作者
Zhen Zhang,Tianchen Luo,Yan Meng,Haixia Shen,Kaiyi Tao,Jian Zeng,Jingping Yuan,Min Fang,Jianming Zheng,Iñigo Bermejo,André Dekker,Dirk De Ruysscher,Leonard Wee,Wencheng Zhang,Youhua Jiang,Yongling Ji
出处
期刊:Journal for ImmunoTherapy of Cancer [BMJ]
卷期号:13 (3): e011149-e011149 被引量:18
标识
DOI:10.1136/jitc-2024-011149
摘要

Background Accurate prediction of pathologic complete response (pCR) following neoadjuvant immunotherapy combined with chemotherapy (nICT) is crucial for tailoring patient care in esophageal squamous cell carcinoma (ESCC). This study aimed to develop and validate a deep learning model using a novel voxel-level radiomics approach to predict pCR based on preoperative CT images. Methods In this multicenter, retrospective study, 741 patients with ESCC who underwent nICT followed by radical esophagectomy were enrolled from three institutions. Patients from one center were divided into a training set (469 patients) and an internal validation set (118 patients) while the data from the other two centers was used as external validation sets (120 and 34 patients, respectively). The deep learning model, Vision-Mamba, integrated voxel-level radiomics feature maps and CT images for pCR prediction. Additionally, other commonly used deep learning models, including 3D-ResNet and Vision Transformer, as well as traditional radiomics methods, were developed for comparison. Model performance was evaluated using accuracy, area under the curve (AUC), sensitivity, specificity, and prognostic stratification capabilities. The SHapley Additive exPlanations analysis was employed to interpret the model’s predictions. Results The Vision-Mamba model demonstrated robust predictive performance in the training set (accuracy: 0.89, AUC: 0.91, sensitivity: 0.82, specificity: 0.92) and validation sets (accuracy: 0.83–0.91, AUC: 0.83–0.92, sensitivity: 0.73–0.94, specificity: 0.84–1.0). The model outperformed other deep learning models and traditional radiomics methods. The model’s ability to stratify patients into high and low-risk groups was validated, showing superior prognostic stratification compared with traditional methods. SHAP provided quantitative and visual model interpretation. Conclusions We present a voxel-level radiomics-based deep learning model to predict pCR to neoadjuvant immunotherapy combined with chemotherapy based on pretreatment diagnostic CT images with high accuracy and robustness. This model could provide a promising tool for individualized management of patients with ESCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhu哈哈完成签到,获得积分20
刚刚
榛子酱发布了新的文献求助10
刚刚
zyy发布了新的文献求助10
1秒前
2秒前
默默的水桃完成签到,获得积分10
2秒前
1551发布了新的文献求助10
2秒前
3秒前
3秒前
Dr.向完成签到,获得积分10
3秒前
5秒前
5秒前
6秒前
BBB完成签到,获得积分10
6秒前
tang发布了新的文献求助10
6秒前
6秒前
蓝天应助MM采纳,获得10
6秒前
Ly完成签到,获得积分10
7秒前
Stephanie完成签到,获得积分20
8秒前
科研通AI6应助陈飞达采纳,获得10
9秒前
XZ应助谢涵琦采纳,获得10
10秒前
在水一方应助伽俽采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
12秒前
wu给yang的求助进行了留言
13秒前
语行完成签到 ,获得积分10
14秒前
懒羊羊发布了新的文献求助10
14秒前
右是我完成签到,获得积分10
17秒前
榛子酱完成签到,获得积分10
17秒前
果果完成签到,获得积分10
17秒前
18秒前
Ally完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
科目三应助李小宁采纳,获得10
20秒前
跳跃以蓝完成签到,获得积分10
21秒前
21秒前
果果发布了新的文献求助10
22秒前
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675479
求助须知:如何正确求助?哪些是违规求助? 4947181
关于积分的说明 15153700
捐赠科研通 4834844
什么是DOI,文献DOI怎么找? 2589670
邀请新用户注册赠送积分活动 1543429
关于科研通互助平台的介绍 1501211