Personalized Prediction of Long-Term Renal Function Prognosis Following Nephrectomy Using Interpretable Machine Learning Algorithms: Case-Control Study

肾切除术 肾脏疾病 肾功能 机器学习 医学 计算机科学 人工智能 重症监护医学 急性肾损伤 算法 内科学
作者
Lingyu Xu,Chenyu Li,Shuang Gao,Long Zhao,Chen Guan,Xuefei Shen,Zhihui Zhu,Cheng Guo,Liwei Zhang,Chengyu Yang,Quandong Bu,Bin Zhou,Yan Xu
出处
期刊:JMIR medical informatics [JMIR Publications Inc.]
卷期号:12: e52837-e52837 被引量:6
标识
DOI:10.2196/52837
摘要

Background Acute kidney injury (AKI) is a common adverse outcome following nephrectomy. The progression from AKI to acute kidney disease (AKD) and subsequently to chronic kidney disease (CKD) remains a concern; yet, the predictive mechanisms for these transitions are not fully understood. Interpretable machine learning (ML) models offer insights into how clinical features influence long-term renal function outcomes after nephrectomy, providing a more precise framework for identifying patients at risk and supporting improved clinical decision-making processes. Objective This study aimed to (1) evaluate postnephrectomy rates of AKI, AKD, and CKD, analyzing long-term renal outcomes along different trajectories; (2) interpret AKD and CKD models using Shapley Additive Explanations values and Local Interpretable Model-Agnostic Explanations algorithm; and (3) develop a web-based tool for estimating AKD or CKD risk after nephrectomy. Methods We conducted a retrospective cohort study involving patients who underwent nephrectomy between July 2012 and June 2019. Patient data were randomly split into training, validation, and test sets, maintaining a ratio of 76.5:8.5:15. Eight ML algorithms were used to construct predictive models for postoperative AKD and CKD. The performance of the best-performing models was assessed using various metrics. We used various Shapley Additive Explanations plots and Local Interpretable Model-Agnostic Explanations bar plots to interpret the model and generated directed acyclic graphs to explore the potential causal relationships between features. Additionally, we developed a web-based prediction tool using the top 10 features for AKD prediction and the top 5 features for CKD prediction. Results The study cohort comprised 1559 patients. Incidence rates for AKI, AKD, and CKD were 21.7% (n=330), 15.3% (n=238), and 10.6% (n=165), respectively. Among the evaluated ML models, the Light Gradient-Boosting Machine (LightGBM) model demonstrated superior performance, with an area under the receiver operating characteristic curve of 0.97 for AKD prediction and 0.96 for CKD prediction. Performance metrics and plots highlighted the model’s competence in discrimination, calibration, and clinical applicability. Operative duration, hemoglobin, blood loss, urine protein, and hematocrit were identified as the top 5 features associated with predicted AKD. Baseline estimated glomerular filtration rate, pathology, trajectories of renal function, age, and total bilirubin were the top 5 features associated with predicted CKD. Additionally, we developed a web application using the LightGBM model to estimate AKD and CKD risks. Conclusions An interpretable ML model effectively elucidated its decision-making process in identifying patients at risk of AKD and CKD following nephrectomy by enumerating critical features. The web-based calculator, found on the LightGBM model, can assist in formulating more personalized and evidence-based clinical strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
13068957428完成签到 ,获得积分10
1秒前
wanci应助CLH采纳,获得10
1秒前
雾山五行发布了新的文献求助10
1秒前
虚心的爆米花完成签到,获得积分10
1秒前
2秒前
Fan完成签到 ,获得积分10
2秒前
晨曦完成签到 ,获得积分10
2秒前
2秒前
科研狗完成签到,获得积分10
3秒前
Neo发布了新的文献求助10
3秒前
可乐小汤圆完成签到,获得积分10
3秒前
Owen应助xian采纳,获得10
3秒前
ll61完成签到,获得积分10
4秒前
koalafish完成签到,获得积分10
4秒前
yznfly应助123别认出我采纳,获得20
4秒前
4秒前
积极一德发布了新的文献求助10
4秒前
科研通AI6应助llllll采纳,获得30
5秒前
共享精神应助kyo采纳,获得10
5秒前
迷你的千愁完成签到,获得积分10
5秒前
5秒前
未来发布了新的文献求助10
5秒前
5秒前
6秒前
NexusExplorer应助坚定晓兰采纳,获得10
6秒前
6秒前
像风如你完成签到 ,获得积分10
6秒前
6秒前
王娜发布了新的文献求助10
6秒前
失眠呆呆鱼完成签到 ,获得积分10
6秒前
第一感觉发布了新的文献求助10
6秒前
南回完成签到,获得积分10
6秒前
yang应助干净之槐采纳,获得10
7秒前
7秒前
科研通AI6应助zlx采纳,获得10
8秒前
蓝桉完成签到,获得积分10
8秒前
崔老师发布了新的文献求助10
8秒前
雾山五行完成签到,获得积分10
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5489687
求助须知:如何正确求助?哪些是违规求助? 4588513
关于积分的说明 14419358
捐赠科研通 4520158
什么是DOI,文献DOI怎么找? 2476567
邀请新用户注册赠送积分活动 1462075
关于科研通互助平台的介绍 1435041