Ensembled-SAMs for Enhanced Small Coronary Artery Segmentation in CCTA Images

分割 计算机科学 图像分割 动脉 计算机视觉 冠状动脉疾病 人工智能 内科学 放射科 医学 心脏病学
作者
Fei Chen,Junyao Ge,Yang Zheng,Kaitai Guo,Feng Cao,Jimin Liang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/jbhi.2024.3450669
摘要

Accurate coronary artery segmentation is crucial for quantitative analysis of coronary arteries in noninvasive coronary computed tomography angiography (CCTA) images. However, current segmentation algorithms often have unsatisfactory recall due to the small size and complex morphology of coronary arteries, particularly in the distal segments. To address this issue, we introduce a new fully automated method named Ensembled-SAMs, which harnesses the strengths of the Segment Anything Model (SAM) and the no-new-U-Net (nnU-Net). First, noisy bounding box prompts are automatically generated by a vesselness algorithm that highlights the tubular structures in the CCTA images. These noisy prompts are then used to fine-tune the SAM and its two variants separately. The SAM variants introduce a classification head in their mask decoder to alleviate the false positives. In addition, an nnU-Net segmentation network is trained from scratch. Finally, the outputs of the SAMs and the nnU-Net are strategically aggregated to obtain the final segmentation result. Experiments on both a self-built dataset and the public Automated Segmentation of Coronary Arteries (ASOCA) challenge dataset demonstrate that the proposed Ensembled-SAMs outperforms the state-of-the-arts, achieving precise segmentation of coronary arteries, with particular enhancement in delineating small coronary artery segments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
WATeam完成签到,获得积分0
1秒前
1秒前
2秒前
2秒前
大胆觅风完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
王木木发布了新的文献求助30
4秒前
5秒前
阔达萧发布了新的文献求助10
5秒前
6秒前
tong发布了新的文献求助30
6秒前
6秒前
董波波发布了新的文献求助10
6秒前
鹿仙发布了新的文献求助10
6秒前
7秒前
仿生人发布了新的文献求助10
8秒前
甜叶菊发布了新的文献求助10
8秒前
曾珍发布了新的文献求助10
9秒前
angelsknight完成签到,获得积分10
9秒前
9秒前
大力便当发布了新的文献求助10
10秒前
terasatang完成签到 ,获得积分10
10秒前
11秒前
bkagyin应助研友_nV3axZ采纳,获得150
12秒前
笨笨芯应助顺顺采纳,获得20
12秒前
阔达萧完成签到,获得积分20
14秒前
lucky发布了新的文献求助10
14秒前
15秒前
jkluiofgh发布了新的文献求助10
16秒前
16秒前
李李发布了新的文献求助10
17秒前
17秒前
溜溜完成签到 ,获得积分10
19秒前
快乐难敌发布了新的文献求助30
19秒前
天天快乐应助望除采纳,获得10
20秒前
脑洞疼应助尘默采纳,获得20
20秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813789
求助须知:如何正确求助?哪些是违规求助? 3358206
关于积分的说明 10392542
捐赠科研通 3075504
什么是DOI,文献DOI怎么找? 1689364
邀请新用户注册赠送积分活动 812733
科研通“疑难数据库(出版商)”最低求助积分说明 767350