Predicting SARS-CoV-2 infection among hemodialysis patients using deep neural network methods

2019年冠状病毒病(COVID-19) 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 2019-20冠状病毒爆发 血液透析 倍他科诺病毒 医学 病毒学 计算机科学 生物信息学 内科学 生物 爆发 疾病 传染病(医学专业)
作者
Lihao Xiao,Hanjie Zhang,Juntao Duan,Xiaoran Ma,Len A. Usvyat,Peter Kotanko,Yuedong Wang
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1) 被引量:1
标识
DOI:10.1038/s41598-024-74967-4
摘要

COVID-19 has a higher rate of morbidity and mortality among dialysis patients than the general population. Identifying infected patients early with the support of predictive models helps dialysis centers implement concerted procedures (e.g., temperature screenings, universal masking, isolation treatments) to control the spread of SARS-CoV-2 and mitigate outbreaks. We collect data from multiple sources, including demographics, clinical, treatment, laboratory, vaccination, socioeconomic status, and COVID-19 surveillance. Previous early prediction models, such as logistic regression, SVM, and XGBoost, require sophisticated feature engineering and need improved prediction performance. We create deep learning models, including Recurrent Neural Networks (RNN) and Convolutional Neural Networks (CNN), to predict SARS-CoV-2 infections during incubation. Our study shows deep learning models with minimal feature engineering can identify those infected patients more accurately than previously built models. Our Long Short-Term Memory (LSTM) model consistently performed well, with an AUC exceeding 0.80, peaking at 0.91 in August 2021. The CNN model also demonstrated strong results with an AUC above 0.75. Both models outperformed previous best XGBoost models by over 0.10 in AUC. Prediction accuracy declined as the pandemic evolved, dropping to approximately 0.75 between September 2021 and January 2022. Maintaining a 20% false positive rate, our LSTM and CNN models identified 66% and 64% of positive cases among patients, significantly outperforming XGBoost models at 42%. We also identify key features for dialysis patients by calculating the gradient of the output with respect to the input features. By closely monitoring these factors, dialysis patients can receive earlier diagnoses and care, leading to less severe outcomes. Our research highlights the effectiveness of deep neural networks in analyzing longitudinal data, especially in predicting COVID-19 infections during the crucial incubation period. These deep network approaches surpass traditional methods relying on aggregated variable means, significantly improving the accurate identification of SARS-CoV-2 infections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
赵亿亿发布了新的文献求助10
2秒前
李文哲应助Alibizia采纳,获得10
3秒前
5秒前
彭于晏应助反向大笨钟采纳,获得10
5秒前
SYLH应助52Hz采纳,获得10
7秒前
我爱Chem完成签到 ,获得积分10
7秒前
研友_VZG7GZ应助ddd采纳,获得10
8秒前
咕咕完成签到,获得积分10
8秒前
清弦完成签到,获得积分10
9秒前
JamesPei应助lt采纳,获得10
9秒前
11秒前
lab完成签到 ,获得积分0
13秒前
dwd发布了新的文献求助10
13秒前
一一完成签到,获得积分10
13秒前
非要叫我起个昵称完成签到,获得积分10
14秒前
huashi39发布了新的文献求助10
15秒前
15秒前
16秒前
SYC完成签到,获得积分10
16秒前
hzw完成签到,获得积分10
17秒前
CipherSage应助ff采纳,获得10
18秒前
科研通AI5应助淡定海亦采纳,获得10
18秒前
20秒前
21秒前
ddd发布了新的文献求助10
21秒前
22秒前
24秒前
jungle发布了新的文献求助20
24秒前
Jacey79完成签到 ,获得积分10
24秒前
Holland应助wxh采纳,获得10
25秒前
伊萨卡完成签到 ,获得积分10
26秒前
铁布衫金钟罩完成签到,获得积分10
26秒前
zza发布了新的文献求助10
27秒前
清爽的机器猫完成签到 ,获得积分10
29秒前
淡定海亦发布了新的文献求助10
30秒前
张宇航关注了科研通微信公众号
30秒前
30秒前
33秒前
34秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Progress in Inorganic Chemistry 200
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825716
求助须知:如何正确求助?哪些是违规求助? 3367860
关于积分的说明 10448391
捐赠科研通 3087329
什么是DOI,文献DOI怎么找? 1698619
邀请新用户注册赠送积分活动 816861
科研通“疑难数据库(出版商)”最低求助积分说明 769973