Genetic Algorithm-Based Acoustic Array Optimization for Estimating UAV DOA Using Beamforming

波束赋形 遗传算法 算法 计算机科学 优化算法 数学优化 数学 电信 机器学习
作者
Nathan Itare,Jean‐Hugh Thomas,Kosai Raoof
出处
期刊:Drones [Multidisciplinary Digital Publishing Institute]
卷期号:9 (2): 149-149
标识
DOI:10.3390/drones9020149
摘要

The localization of unmanned aerial vehicles is an important topic due to several threats near sensitive sites. Localization based on their sounds has been a particular point of interest in past studies for many years. It requires the use of a microphone array. The positioning of the various microphones making up an antenna defines the intrinsic directivity of the array. In this study, a genetic algorithm is used to determine the microphone positions that optimize directivity in a focus direction and for a frequency, by favoring the narrowness of the main lobe and the reduction of the secondary lobes. The optimization leads to several antennas with a 3D structure similar to that designed in a previous study. A method estimating the direction of arrival of a drone was also presented in that study making use of its acoustic signature to enhance the signal-to-noise ratio and thus improving the estimations. In this paper, an improvement to the method is proposed for tracking the drone’s trajectory. Measurements were conducted to compare the drone locations given by the first designed antenna and the one optimized by the genetic algorithm. Performance on the direction of arrival found is characterized in terms of mean error, standard deviation and root mean square error relative to the GPS reference onboard the UAV. An experiment with the optimized antenna has also been conducted with the drone at a great distance to the antenna to characterize the maximal distance for possible estimations of the direction of arrival. Results show that the method used for the direction of arrival estimation can give a mean error below 10° in azimuth and 5° in elevation. The maximum distance between the antenna and the drone for which the method is able to give estimations is between 240 and 340 m.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
黄婷婷完成签到,获得积分10
6秒前
7秒前
小飞飞应助迷人以寒采纳,获得10
8秒前
核桃发布了新的文献求助10
11秒前
妮儿发布了新的文献求助10
11秒前
12秒前
SciGPT应助yn采纳,获得10
12秒前
16秒前
Dorisyoolee发布了新的文献求助10
21秒前
lzl008完成签到 ,获得积分10
21秒前
24秒前
24秒前
阔达的马里奥完成签到 ,获得积分10
24秒前
情怀应助无奈的萍采纳,获得10
24秒前
CipherSage应助Dorisyoolee采纳,获得10
28秒前
樱sky完成签到,获得积分10
28秒前
yn发布了新的文献求助10
29秒前
天天喝咖啡完成签到,获得积分10
31秒前
勤奋向真发布了新的文献求助10
31秒前
CNAxiaozhu7应助钱烨华采纳,获得20
34秒前
Warming关注了科研通微信公众号
36秒前
笑点低的凝阳完成签到,获得积分10
36秒前
lzl007完成签到 ,获得积分10
41秒前
Crossing完成签到,获得积分10
43秒前
指导灰完成签到 ,获得积分10
46秒前
今后应助彩色的无声采纳,获得10
57秒前
Hello应助刘佳敏采纳,获得10
59秒前
霍师傅发布了新的文献求助10
1分钟前
纪外绣完成签到,获得积分10
1分钟前
火龙果完成签到,获得积分10
1分钟前
1分钟前
猪猪hero应助霍师傅采纳,获得10
1分钟前
酷波er应助霍师傅采纳,获得30
1分钟前
手抓饼啊发布了新的文献求助10
1分钟前
朱佳宁完成签到 ,获得积分10
1分钟前
Chloe955发布了新的文献求助10
1分钟前
ding应助尛瞐慶成采纳,获得10
1分钟前
1分钟前
小姚完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779780
求助须知:如何正确求助?哪些是违规求助? 3325232
关于积分的说明 10222026
捐赠科研通 3040376
什么是DOI,文献DOI怎么找? 1668788
邀请新用户注册赠送积分活动 798776
科研通“疑难数据库(出版商)”最低求助积分说明 758549