Explainable Multimodal Deep Learning for Heart Sounds and Electrocardiogram Classification

计算机科学 深度学习 人工智能 语音识别 心音 心脏病学 医学
作者
Bruno Oliveira,André Lobo,Corrado Costa,Ricardo Fontes‐Carvalho,Miguel Coimbra,Francesco Renna
标识
DOI:10.1109/embc53108.2024.10782371
摘要

We introduce a Gradient-weighted Class Activation Mapping (Grad-CAM) methodology to assess the performance of five distinct models for binary classification (normal/abnormal) of synchronized heart sounds and electrocardiograms. The applied models comprise a one-dimensional convolutional neural network (1D-CNN) using solely ECG signals, a two-dimensional convolutional neural network (2D-CNN) applied separately to PCG and ECG signals, and two multimodal models that employ both signals. In the multimodal models, we implement two fusion approaches: an early fusion and a late fusion. The results indicate a performance improvement in using an early fusion model for the joint classification of both signals, as opposed to using a PCG 2D-CNN or ECG 1D-CNN alone (e.g., ROC-AUC score of 0.81 vs. 0.79 and 0.79, respectively). Although the ECG 2D-CNN demonstrates a higher ROC-AUC score (0.82) compared to the early fusion model, it exhibits a lower F1-score (0.85 vs. 0.86). Grad-CAM unveils that the models tend to yield higher gradients in the QRS complex and T/P-wave of the ECG signal, as well as between the two PCG fundamental sounds (S1 and S2), for discerning normalcy or abnormality, thus showcasing that the models focus on clinically relevant features of the recorded data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
完美芹发布了新的文献求助10
刚刚
充电宝应助周一采纳,获得10
刚刚
可爱的函函应助小房子采纳,获得10
1秒前
syzsyz完成签到,获得积分20
1秒前
1秒前
2秒前
Eraser完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
6秒前
科研通AI2S应助陈陈采纳,获得10
7秒前
小巧涔雨发布了新的文献求助10
7秒前
义气剑通发布了新的文献求助10
7秒前
chrissy发布了新的文献求助10
7秒前
执着小玉完成签到,获得积分10
8秒前
研友_VZG7GZ应助天真的宝马采纳,获得10
9秒前
共享精神应助aka毕业顺利采纳,获得10
9秒前
曹中明发布了新的文献求助10
9秒前
huhutu发布了新的文献求助10
10秒前
冬菇头完成签到 ,获得积分10
11秒前
11秒前
12秒前
syzsyz发布了新的文献求助30
15秒前
小豆包科研冲刺者完成签到,获得积分10
16秒前
周一发布了新的文献求助10
16秒前
科研通AI5应助完美芹采纳,获得10
17秒前
19秒前
19秒前
tuantuantuan完成签到,获得积分10
20秒前
典雅雅旋完成签到,获得积分20
20秒前
科目三应助文静的颖采纳,获得10
21秒前
21秒前
小房子发布了新的文献求助10
22秒前
舒适觅儿完成签到,获得积分10
23秒前
23秒前
帅帅完成签到,获得积分10
23秒前
24秒前
bkagyin应助昀宇采纳,获得10
24秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794745
求助须知:如何正确求助?哪些是违规求助? 3339531
关于积分的说明 10296585
捐赠科研通 3056322
什么是DOI,文献DOI怎么找? 1676961
邀请新用户注册赠送积分活动 804956
科研通“疑难数据库(出版商)”最低求助积分说明 762244