Ambient Synthesis of Cyclohexanone Oxime via In Situ Produced Hydrogen Peroxide over Cobalt‐Based Electrocatalyst

电催化剂 环己酮 催化作用 羟胺 化学 无机化学 电化学 有机化学 电极 物理化学
作者
Hui Xu,Jin Meng,Shengbo Zhang,Xinyuan Zhang,Min Xu,Yunxia Zhang,Guozhong Wang,Haimin Zhang
出处
期刊:Advanced Science [Wiley]
卷期号:12 (6): e2413475-e2413475 被引量:4
标识
DOI:10.1002/advs.202413475
摘要

Abstract Cyclohexanone oxime, a critical precursor for nylon‐6 production, is traditionally synthesized via the hydroxylamine method under industrial harsh conditions. Here is present a one‐step electrochemical integrated approach for the efficient production of cyclohexanone oxime under ambient conditions. This approach employed the coupling of in situ electro‐synthesized H 2 O 2 over a cobalt (Co)‐based electrocatalyst with the titanium silicate‐1 (TS‐1) heterogeneous catalyst to achieve the cyclohexanone ammoximation process. The cathode electrocatalyst is consisted of atomically dispersed Co sites and small Co nanoparticles co‐anchored on carboxylic multi‐walled carbon nanotubes (CoSAs/SNPs‐OCNTs), which delivered superior electrocatalytic activity toward the two‐electron oxygen reduction reaction (2e − ORR) with high‐efficient H 2 O 2 production in 0.1 m sodium phosphate (NaPi). Theoretical calculations revealed that the introduction of Co nanoparticles effectively optimized the binding strength of * OOH species on Co atomic sites, thus facilitating the 2e − ORR. The subsequent tandem catalytic system achieved a high cyclohexanone conversion of 71.7% ± 1.1% with a cyclohexanone oxime selectivity of 70.3% ± 0.6%. In this system, the TS‐1 catalyst effectively captured the * OOH intermediate and activated the in situ generated H 2 O 2 to form Ti‐OOH species, which promoted the formation of hydroxylamine and thereby enhanced the oxime production performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
su完成签到,获得积分10
刚刚
今后应助清河聂氏采纳,获得10
刚刚
1秒前
XIVV发布了新的文献求助10
1秒前
abc完成签到,获得积分10
1秒前
一川江水完成签到,获得积分20
1秒前
无极微光应助liu采纳,获得20
1秒前
Wendy发布了新的文献求助10
1秒前
1秒前
科研通AI6应助fxx采纳,获得10
2秒前
科研通AI6应助Tiffan采纳,获得10
2秒前
可爱的函函应助Tiffan采纳,获得10
2秒前
情怀应助Tiffan采纳,获得10
2秒前
赘婿应助Tiffan采纳,获得10
2秒前
2秒前
2秒前
3秒前
3秒前
BOSLobster发布了新的文献求助10
3秒前
一蓑烟雨任平生完成签到,获得积分10
4秒前
香蕉觅云应助Jade采纳,获得10
4秒前
4秒前
Akim应助寒冷的初雪采纳,获得10
4秒前
5秒前
5秒前
radish完成签到,获得积分10
5秒前
JJ发布了新的文献求助10
5秒前
芷卉发布了新的文献求助10
5秒前
lyk2815发布了新的文献求助10
6秒前
活力源智发布了新的文献求助10
6秒前
路非明发布了新的文献求助10
6秒前
简单无极完成签到,获得积分10
6秒前
CodeCraft应助小玲哥采纳,获得10
7秒前
7秒前
乐乐应助冷艳中蓝采纳,获得10
7秒前
pluto应助打起精神来采纳,获得10
8秒前
果汁发布了新的文献求助10
8秒前
充电宝应助AL226采纳,获得10
8秒前
小蘑菇应助乐观寻雪采纳,获得10
8秒前
BOSLobster完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660943
求助须知:如何正确求助?哪些是违规求助? 4836395
关于积分的说明 15092694
捐赠科研通 4819601
什么是DOI,文献DOI怎么找? 2579405
邀请新用户注册赠送积分活动 1533827
关于科研通互助平台的介绍 1492605