Diabetic foot ulcer classification assessment employing an improved machine learning algorithm

糖尿病足 医学 糖尿病足溃疡 分类 截肢 聚类分析 机器学习 蜂窝织炎 星团(航天器) 算法 糖尿病 人工智能 计算机科学 外科 内分泌学 程序设计语言
作者
Raj Kumar Gudivaka,Rajya Lakshmi Gudivaka,Basava Ramanjaneyulu Gudivaka,Dinesh Kumar Reddy Basani,Sri Harsha Grandhi,Faheem Khan
出处
期刊:Technology and Health Care [IOS Press]
被引量:1
标识
DOI:10.1177/09287329241296417
摘要

Background Diabetic foot ulcers (DFU) are a severe consequence of diabetes that, if left untreated, can lead to amputation, blindness, renal failure, and other serious complications. The high treatment expense and length of treatment for this therapeutic technique are both disadvantages. Despite the effectiveness of this strategy, a distant, cost-effective, and comfortable DFU diagnostic therapy is necessary. Objective This study proposed the Advanced Machine Learning Practical Method for Diabetic Foot Ulcer Classification. Methods This unique and cost-effective healthcare solution uses Practical Methodologies with the reinforcement learning algorithm for DFU imaging. The categorization was based on constant technological advancements, and the benefits of Machine Learning (ML) for use in DFU treatment are numerous, including enhanced clinical decision-making based on Ulcer classification and healing progress. The ML greatly impacted DFU data analysis, with categorization and risk assessment among the findings. Results The machine-learning technique can potentially create a paradigm shift by providing a 92.5% classification accuracy evaluation in the diabetic foot Ulcer problem. According to Clustering Scenario Analysis of Diabetic Foot Ulcer, when compared to Mild To Moderate Localized Cellulitis (Cluster 1 produces classification efficiency from 71% to 88%), Moderate To Severe Cellulitis (Cluster 2 delivers classification efficiency from 85% to 97%), Moderate To Severe Cellulitis With Ischemia (Cluster 3 produces classification efficiency from 90% to 98%), and Life-Or Limb-Threatening Infection (Cluster 4), the results were promising (Cluster 4 makes classification efficiency from 93.5% to 98.2%). The efficiency of this is Cluster 78.45 percent higher than the existing procedure. Conclusions The proposed Advanced Machine Learning Practical Method demonstrates significant improvements in DFU classification accuracy and efficiency, presenting a cost-effective and effective alternative to traditional diagnostic approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赫幼蓉完成签到,获得积分10
刚刚
学渣小Robert完成签到,获得积分10
1秒前
Emma发布了新的文献求助10
1秒前
2秒前
cqsjy完成签到,获得积分10
2秒前
殷启维发布了新的文献求助10
2秒前
小太阳发布了新的文献求助10
3秒前
请问发布了新的文献求助10
3秒前
学术裁缝完成签到,获得积分10
3秒前
勿明完成签到,获得积分10
3秒前
3秒前
Ampace小老弟完成签到 ,获得积分10
4秒前
合适忆南完成签到,获得积分10
4秒前
火星上送终完成签到,获得积分10
5秒前
ss发布了新的文献求助10
5秒前
攒星星完成签到,获得积分10
6秒前
bkagyin应助达布妞采纳,获得10
6秒前
灵巧尔云发布了新的文献求助10
6秒前
xili完成签到,获得积分10
7秒前
小鱼完成签到,获得积分10
7秒前
清秀的SONG完成签到 ,获得积分10
7秒前
HWei完成签到,获得积分10
7秒前
红红火火恍恍惚惚完成签到,获得积分10
8秒前
9秒前
咕噜仔完成签到,获得积分10
9秒前
9秒前
Akim应助wuce采纳,获得10
10秒前
专注的小松鼠完成签到,获得积分10
10秒前
Ting完成签到,获得积分10
12秒前
12秒前
Planetary完成签到,获得积分10
13秒前
炙热的子默完成签到,获得积分10
13秒前
自由飞阳完成签到,获得积分10
14秒前
Qianyun完成签到,获得积分10
15秒前
小胖子完成签到 ,获得积分10
15秒前
15秒前
111111完成签到,获得积分10
15秒前
冥泷发布了新的文献求助10
16秒前
禾中丨小骨完成签到 ,获得积分10
16秒前
xmmm完成签到,获得积分10
16秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3820211
求助须知:如何正确求助?哪些是违规求助? 3363100
关于积分的说明 10420892
捐赠科研通 3081487
什么是DOI,文献DOI怎么找? 1695130
邀请新用户注册赠送积分活动 814901
科研通“疑难数据库(出版商)”最低求助积分说明 768567