已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

P0377 Development of Crohn’s Aid mobile application based on AI algorithms to make an early diagnosis of Crohns Disease in TB endemic regions

医学 克罗恩病 疾病 算法 人工智能 内科学 计算机科学
作者
Srikant Mohta,Rintu Kutum,Ram M. Pendyala,Harshal Dev,Bhaskar Kante,Sudheer K. Vuyyuru,Peeyush Kumar,Shubi Virmani,Suman Kumar,Shaila Bahl,Govind Makharia,Saurabh Chaudhury,Saurabh Kedia,Tavpritesh Sethi,Vineet Ahuja
出处
期刊:Journal of Crohn's and Colitis [Oxford University Press]
卷期号:19 (Supplement_1): i861-i863
标识
DOI:10.1093/ecco-jcc/jjae190.0551
摘要

Abstract Background Intestinal tuberculosis (ITB) and Crohn’s disease (CD) mimic each other clinically, endoscopically, and radiologically and are difficult to differentiate. This is a major barrier to make an early diagnosis of CD in TB endemic areas. We aimed to develop a high accuracy machine learning-based model which could be easily implemented in an innovative way. Methods We retrospectively analyzed data from 1066 patients. After data cleaning, 796 patients (514 CD & 282 ITB) and data from 28 variables were included. A super learner approach using random forest and support vector machine was used for differentiating ITB from CD. Data was divided into 80 percent training and 20 percent testing data sets followed by 10-fold cross validation. The optimal cut-off for the diagnosis was obtained using the Youden index-measure to optimize the balance between sensitivity and specificity and the model was evaluated at multiple thresholds for clinical utility. The best performing model was incorporated into a mobile phone-based application. Prospective validation on 37 patients was carried out with similar accuracy. Results The random forest model achieved a sensitivity, specificity and accuracy of 0.92, 0.83, 0.86 respectively and performed better than the support vector machine model trained with linear and radial basis functions. The random forest model was found to have the best AUROC with a cutoff of 0.4, predicting the diagnosis of CD with a sensitivity of 93%, specificity of 83%, and accuracy of 86%, positive predictive value of 76%, and negative predictive value of 95%. The random forest model was used for creation of the application. The app is being made available on smartphones free of cost for use by any physician. Conclusion Our model differentiated between ITB and CD with high accuracy and has the potential to makean early diagnosis of CD. The free to use mobile application would make implementation of thisalgorithm much easier, allowing for widespread use in clinical practice and helping make moreinformed decisions. More data from multiple centers and different geographical locationswould aid in further improving the model performance. Figure 1: Overall model training approach Figure 2: Model performance and selection of appropriate cut-off
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
End发布了新的文献求助10
1秒前
Orange应助优雅的若雁采纳,获得10
1秒前
Colo完成签到,获得积分10
1秒前
科研通AI6应助ceeray23采纳,获得20
5秒前
星辰大海应助End采纳,获得10
5秒前
7秒前
13秒前
14秒前
我是老大应助林海国采纳,获得10
15秒前
17秒前
嘻嘻哈哈应助ceeray23采纳,获得20
17秒前
子琢完成签到,获得积分10
18秒前
w123发布了新的文献求助10
18秒前
22秒前
w123完成签到,获得积分10
23秒前
牛马完成签到,获得积分10
23秒前
领导范儿应助大意的如南采纳,获得10
25秒前
齐朕完成签到,获得积分10
28秒前
小小de小小完成签到,获得积分10
29秒前
32秒前
Wxxxxx完成签到 ,获得积分10
33秒前
tszjw168完成签到 ,获得积分10
34秒前
yjh完成签到,获得积分10
34秒前
中秋快乐完成签到,获得积分10
35秒前
你喜欢什么样子的我演给你看完成签到 ,获得积分10
36秒前
xq完成签到,获得积分10
36秒前
37秒前
40秒前
NOTHING完成签到 ,获得积分10
41秒前
嘿嘿应助机灵的鹏煊采纳,获得10
42秒前
飞蚁完成签到 ,获得积分10
42秒前
44秒前
46秒前
rr完成签到,获得积分10
49秒前
小半完成签到 ,获得积分10
50秒前
yinlao完成签到,获得积分0
54秒前
L_MD完成签到,获得积分10
54秒前
57秒前
草莓夹心小饼干完成签到,获得积分10
59秒前
香蕉觅云应助嘟嘟嘟cpu采纳,获得10
59秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5385293
求助须知:如何正确求助?哪些是违规求助? 4507902
关于积分的说明 14029231
捐赠科研通 4417843
什么是DOI,文献DOI怎么找? 2426701
邀请新用户注册赠送积分活动 1419398
关于科研通互助平台的介绍 1397838