已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Early Childhood Predictors for Dental Caries: A Machine Learning Approach

医学 逻辑回归 社会心理的 牙科 接收机工作特性 儿童早期龋齿 社会经济地位 队列 口腔健康 人口 环境卫生 精神科 内科学
作者
Lilian Toledo Reyes,Jéssica Klöckner Knorst,Fernanda Ruffo Ortiz,Bruna Brondani,Bruno Emmanuelli,Renata Saraiva Guedes,Fausto Medeiros Mendes,Thiago Machado Ardenghi
出处
期刊:Journal of Dental Research [SAGE Publishing]
卷期号:102 (9): 999-1006 被引量:18
标识
DOI:10.1177/00220345231170535
摘要

We aimed to develop and validate caries prognosis models in primary and permanent teeth after 2 and 10 y of follow-up through a machine learning (ML) approach, using predictors collected in early childhood. Data from a 10-y prospective cohort study conducted in southern Brazil were analyzed. Children aged 1 to 5 y were first examined in 2010 and reassessed in 2012 and 2020 regarding caries development. Dental caries was assessed using the Caries Detection and Assessment System (ICDAS) criteria. Demographic, socioeconomic, psychosocial, behavioral, and clinical factors were collected. ML algorithms decision tree, random forest, and extreme gradient boosting (XGBoost) were employed, along with logistic regression. The discrimination and calibration of models were verified in independent sets. From 639 children included at the baseline, we reassessed 467 (73.3%) and 428 (66.9%) children in 2012 and 2020, respectively. For all models, the area under receiver operating characteristic curve (AUC) at training and testing was above 0.70 for predicting caries in primary teeth after 2-y follow-up, with caries severity at the baseline being the strongest predictor. After 10 y, the SHAP algorithm based on XGBoost achieved an AUC higher than 0.70 in the testing set and indicated caries experience, nonuse of fluoridated toothpaste, parent education, higher frequency of sugar consumption, low frequency of visits to the relatives, and poor parents’ perception of their children’s oral health as top predictors for caries in permanent teeth. In conclusion, the implementation of ML shows potential for determining caries development in both primary and permanent teeth using easy-to-collect predictors in early childhood.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
壮观的谷冬完成签到 ,获得积分10
1秒前
斯文败类应助沉静白翠采纳,获得10
1秒前
在水一方应助Newky采纳,获得10
1秒前
禹卓完成签到,获得积分10
2秒前
岳小龙完成签到 ,获得积分10
7秒前
9秒前
脑洞疼应助一只羊采纳,获得10
12秒前
沉静白翠发布了新的文献求助10
15秒前
cis2014完成签到,获得积分10
15秒前
zpj完成签到 ,获得积分10
15秒前
礼岁岁完成签到 ,获得积分10
16秒前
Rita应助Caixtmx采纳,获得10
16秒前
wao完成签到 ,获得积分10
16秒前
17秒前
life的半边天完成签到 ,获得积分10
17秒前
18秒前
18秒前
上官完成签到 ,获得积分10
18秒前
xy完成签到 ,获得积分10
20秒前
20秒前
今我来思完成签到 ,获得积分10
20秒前
Fin2046发布了新的文献求助10
21秒前
喜悦夏青发布了新的文献求助10
22秒前
宣灵薇完成签到,获得积分0
25秒前
25秒前
surname发布了新的文献求助10
26秒前
26秒前
27秒前
聪慧不二完成签到 ,获得积分10
28秒前
小八路发布了新的文献求助10
28秒前
饺子完成签到,获得积分20
28秒前
30秒前
Lzoctor完成签到 ,获得积分10
31秒前
普里兹盐发布了新的文献求助30
31秒前
阳光下午茶完成签到 ,获得积分10
33秒前
小林同学0219完成签到 ,获得积分10
33秒前
糖醋里脊加醋完成签到 ,获得积分10
34秒前
侠女完成签到 ,获得积分10
34秒前
严明完成签到,获得积分10
35秒前
严明完成签到,获得积分10
35秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795440
求助须知:如何正确求助?哪些是违规求助? 3340443
关于积分的说明 10300287
捐赠科研通 3057032
什么是DOI,文献DOI怎么找? 1677332
邀请新用户注册赠送积分活动 805385
科研通“疑难数据库(出版商)”最低求助积分说明 762491