亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Early Childhood Predictors for Dental Caries: A Machine Learning Approach

医学 逻辑回归 社会心理的 牙科 接收机工作特性 儿童早期龋齿 社会经济地位 队列 口腔健康 人口 环境卫生 精神科 内科学
作者
Lilian Toledo Reyes,Jéssica Klöckner Knorst,Fernanda Ruffo Ortiz,Bruna Brondani,Bruno Emmanuelli,Renata Saraiva Guedes,Fausto Medeiros Mendes,Thiago Machado Ardenghi
出处
期刊:Journal of Dental Research [SAGE]
卷期号:102 (9): 999-1006 被引量:38
标识
DOI:10.1177/00220345231170535
摘要

We aimed to develop and validate caries prognosis models in primary and permanent teeth after 2 and 10 y of follow-up through a machine learning (ML) approach, using predictors collected in early childhood. Data from a 10-y prospective cohort study conducted in southern Brazil were analyzed. Children aged 1 to 5 y were first examined in 2010 and reassessed in 2012 and 2020 regarding caries development. Dental caries was assessed using the Caries Detection and Assessment System (ICDAS) criteria. Demographic, socioeconomic, psychosocial, behavioral, and clinical factors were collected. ML algorithms decision tree, random forest, and extreme gradient boosting (XGBoost) were employed, along with logistic regression. The discrimination and calibration of models were verified in independent sets. From 639 children included at the baseline, we reassessed 467 (73.3%) and 428 (66.9%) children in 2012 and 2020, respectively. For all models, the area under receiver operating characteristic curve (AUC) at training and testing was above 0.70 for predicting caries in primary teeth after 2-y follow-up, with caries severity at the baseline being the strongest predictor. After 10 y, the SHAP algorithm based on XGBoost achieved an AUC higher than 0.70 in the testing set and indicated caries experience, nonuse of fluoridated toothpaste, parent education, higher frequency of sugar consumption, low frequency of visits to the relatives, and poor parents’ perception of their children’s oral health as top predictors for caries in permanent teeth. In conclusion, the implementation of ML shows potential for determining caries development in both primary and permanent teeth using easy-to-collect predictors in early childhood.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
14秒前
22秒前
30秒前
大个应助XX采纳,获得30
37秒前
Thi发布了新的文献求助10
37秒前
40秒前
42秒前
47秒前
Jiangtao完成签到,获得积分10
49秒前
Viiigo完成签到,获得积分10
58秒前
量子星尘发布了新的文献求助10
59秒前
59秒前
guagua发布了新的文献求助10
1分钟前
科研通AI2S应助guagua采纳,获得10
1分钟前
1分钟前
热情依白完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
忧心的香水完成签到,获得积分10
1分钟前
1分钟前
original完成签到,获得积分10
1分钟前
1分钟前
2分钟前
大气亦巧发布了新的文献求助10
2分钟前
2分钟前
2分钟前
安青兰完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
Criminology34举报Raymond求助涉嫌违规
2分钟前
空溟fever发布了新的文献求助10
2分钟前
hx发布了新的文献求助10
2分钟前
大气亦巧完成签到,获得积分10
2分钟前
2分钟前
2分钟前
领导范儿应助谛因采纳,获得50
2分钟前
2分钟前
李健应助赵振辉采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639594
求助须知:如何正确求助?哪些是违规求助? 4749168
关于积分的说明 15006790
捐赠科研通 4797774
什么是DOI,文献DOI怎么找? 2563840
邀请新用户注册赠送积分活动 1522769
关于科研通互助平台的介绍 1482471