Early Childhood Predictors for Dental Caries: A Machine Learning Approach

医学 逻辑回归 社会心理的 牙科 接收机工作特性 儿童早期龋齿 社会经济地位 队列 口腔健康 人口 环境卫生 精神科 内科学
作者
Lilian Toledo Reyes,Jéssica Klöckner Knorst,Fernanda Ruffo Ortiz,Bruna Brondani,Bruno Emmanuelli,Renata Saraiva Guedes,Fausto Medeiros Mendes,Thiago Machado Ardenghi
出处
期刊:Journal of Dental Research [SAGE Publishing]
卷期号:102 (9): 999-1006 被引量:28
标识
DOI:10.1177/00220345231170535
摘要

We aimed to develop and validate caries prognosis models in primary and permanent teeth after 2 and 10 y of follow-up through a machine learning (ML) approach, using predictors collected in early childhood. Data from a 10-y prospective cohort study conducted in southern Brazil were analyzed. Children aged 1 to 5 y were first examined in 2010 and reassessed in 2012 and 2020 regarding caries development. Dental caries was assessed using the Caries Detection and Assessment System (ICDAS) criteria. Demographic, socioeconomic, psychosocial, behavioral, and clinical factors were collected. ML algorithms decision tree, random forest, and extreme gradient boosting (XGBoost) were employed, along with logistic regression. The discrimination and calibration of models were verified in independent sets. From 639 children included at the baseline, we reassessed 467 (73.3%) and 428 (66.9%) children in 2012 and 2020, respectively. For all models, the area under receiver operating characteristic curve (AUC) at training and testing was above 0.70 for predicting caries in primary teeth after 2-y follow-up, with caries severity at the baseline being the strongest predictor. After 10 y, the SHAP algorithm based on XGBoost achieved an AUC higher than 0.70 in the testing set and indicated caries experience, nonuse of fluoridated toothpaste, parent education, higher frequency of sugar consumption, low frequency of visits to the relatives, and poor parents’ perception of their children’s oral health as top predictors for caries in permanent teeth. In conclusion, the implementation of ML shows potential for determining caries development in both primary and permanent teeth using easy-to-collect predictors in early childhood.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风中的哈密瓜完成签到,获得积分10
刚刚
wg发布了新的文献求助10
刚刚
wos完成签到,获得积分10
刚刚
彭于晏应助爆学的狗采纳,获得10
刚刚
哈哈发布了新的文献求助10
1秒前
2秒前
大力完成签到,获得积分10
2秒前
wanci应助王里走采纳,获得10
3秒前
DTS发布了新的文献求助10
3秒前
nightmare发布了新的文献求助10
4秒前
Orange应助crowd_lpy采纳,获得10
4秒前
Ava应助山雀采纳,获得10
7秒前
刘盈完成签到,获得积分10
7秒前
雍凡白发布了新的文献求助10
7秒前
阿文完成签到 ,获得积分10
8秒前
8秒前
科目三应助nightmare采纳,获得10
8秒前
9秒前
9秒前
9秒前
一星完成签到,获得积分10
9秒前
10秒前
wyb完成签到 ,获得积分10
12秒前
12秒前
wg完成签到,获得积分10
12秒前
13秒前
SciGPT应助黎明采纳,获得10
14秒前
14秒前
今后应助22222采纳,获得10
14秒前
15秒前
云知关注了科研通微信公众号
15秒前
15秒前
wxhwyys发布了新的文献求助10
15秒前
tjfwg完成签到,获得积分10
15秒前
水上汀州完成签到,获得积分10
16秒前
16秒前
里里完成签到,获得积分10
16秒前
17秒前
lwwlccc完成签到,获得积分10
18秒前
jingjing完成签到,获得积分10
18秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226663
求助须知:如何正确求助?哪些是违规求助? 4398072
关于积分的说明 13688295
捐赠科研通 4262686
什么是DOI,文献DOI怎么找? 2339276
邀请新用户注册赠送积分活动 1336647
关于科研通互助平台的介绍 1292640