Detecting Marine pollutants and Sea Surface features with Deep learning in Sentinel-2 imagery

多光谱图像 计算机科学 深度学习 专题地图 遥感 分割 环境科学 海洋污染 人工智能 污染 地图学 生态学 地理 生物
作者
Katerina Kikaki,Ioannis Kakogeorgiou,Ibrahim Hoteit,Κωνσταντίνος Καράντζαλος
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:210: 39-54 被引量:12
标识
DOI:10.1016/j.isprsjprs.2024.02.017
摘要

Despite the significant negative impact of marine pollution on the ecosystem and humans, its automated detection and tracking from the broadly available satellite data is still a major challenge. In particular, most research and development efforts focus on one specific pollutant implementing, in most cases, binary classification tasks, e.g., detect Plastics or no Plastics, or target a limited number of classes, such as Oil Spill, Look-alikes and Water. Moreover, most developed algorithms tend to operate successfully only locally, failing to scale and generalize adequately towards operational deployments. Our aim is to address these challenges by introducing a holistic approach towards marine pollutant detection using remote sensing. We argue that constructing such operational solutions requires detectors trained and tested against different types of pollutants, various sea surface features and water-related thematic classes. We offer such a Marine Debris and Oil Spill (MADOS) dataset, composed of high-resolution multispectral Sentinel-2 (S2) data, consisting of 174 scenes captured between 2015 and 2022, with approximately 1.5 M annotated pixels, which are globally distributed and collected under various weather conditions. Moreover, we propose a novel Deep Learning (DL) framework named MariNeXt, based on recent state-of-the-art architectural advancements for semantic segmentation, which outperforms all baselines by at least 12 % in F1 and mIoU metrics. The extensive quantitative and qualitative validation justifies our choices and demonstrates the high potential of the proposed approach. We further discuss the underlying discrimination challenges among the competing thematic classes. Our dataset, code and trained models are openly available at https://marine-pollution.github.io/.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木九黎完成签到,获得积分10
1秒前
小小阿杰完成签到,获得积分10
1秒前
2秒前
HMBB发布了新的文献求助10
2秒前
刚刚好完成签到,获得积分10
4秒前
英俊的铭应助xu采纳,获得10
7秒前
神内小天使完成签到,获得积分10
8秒前
doudou完成签到,获得积分10
8秒前
8秒前
汉堡包应助小智采纳,获得10
8秒前
高贵魂幽完成签到,获得积分10
11秒前
ganjqly应助陈德采纳,获得10
12秒前
水电费完成签到,获得积分10
14秒前
11完成签到,获得积分10
16秒前
siyan156完成签到 ,获得积分10
17秒前
小智完成签到,获得积分10
17秒前
leng完成签到 ,获得积分10
17秒前
丘比特应助踏实小蘑菇采纳,获得10
17秒前
YY完成签到,获得积分0
18秒前
科研通AI2S应助星期五采纳,获得10
19秒前
20秒前
20秒前
今后应助坚强西牛采纳,获得10
20秒前
mm完成签到,获得积分10
22秒前
苏南完成签到 ,获得积分10
23秒前
zhenzhen完成签到,获得积分10
23秒前
23秒前
我超凶的发布了新的文献求助20
23秒前
24秒前
lbx完成签到 ,获得积分10
24秒前
深情安青应助sdl采纳,获得10
25秒前
26秒前
小石猛猛冲完成签到 ,获得积分10
27秒前
xiaoguai发布了新的文献求助10
28秒前
28秒前
29秒前
坚强西牛完成签到,获得积分10
29秒前
HL完成签到,获得积分10
30秒前
坚强西牛发布了新的文献求助10
31秒前
Dky_安静的初夏应助钱念波采纳,获得10
32秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963841
求助须知:如何正确求助?哪些是违规求助? 3509723
关于积分的说明 11148644
捐赠科研通 3243530
什么是DOI,文献DOI怎么找? 1792128
邀请新用户注册赠送积分活动 873506
科研通“疑难数据库(出版商)”最低求助积分说明 803808