Identifying squalene epoxidase as a metabolic vulnerability in high‐risk osteosarcoma using an artificial intelligence‐derived prognostic index

角鲨烯单加氧酶 索引(排版) 角鲨烯 脆弱性(计算) 医学 计算机科学 生物 万维网 计算机安全 生物化学 生物合成
作者
Yongjie Wang,Xiaolong Ma,Enjie Xu,Zhen Huang,Yang Chen,Kunpeng Zhu,Yang Dong,Chunlin Zhang
出处
期刊:Clinical and translational medicine [Wiley]
卷期号:14 (2): e1586-e1586 被引量:25
标识
DOI:10.1002/ctm2.1586
摘要

Abstract Background Osteosarcoma (OSA) presents a clinical challenge and has a low 5‐year survival rate. Currently, the lack of advanced stratification models makes personalized therapy difficult. This study aims to identify novel biomarkers to stratify high‐risk OSA patients and guide treatment. Methods We combined 10 machine‐learning algorithms into 101 combinations, from which the optimal model was established for predicting overall survival based on transcriptomic profiles for 254 samples. Alterations in transcriptomic, genomic and epigenomic landscapes were assessed to elucidate mechanisms driving poor prognosis. Single‐cell RNA sequencing (scRNA‐seq) unveiled genes overexpressed in OSA cells as potential therapeutic targets, one of which was validated via tissue staining, knockdown and pharmacological inhibition. We characterized changes in multiple phenotypes, including proliferation, colony formation, migration, invasion, apoptosis, chemosensitivity and in vivo tumourigenicity. RNA‐seq and Western blotting elucidated the impact of squalene epoxidase ( SQLE ) suppression on signalling pathways. Results The artificial intelligence‐derived prognostic index (AIDPI), generated by our model, was an independent prognostic biomarker, outperforming clinicopathological factors and previously published signatures. Incorporating the AIDPI with clinical factors into a nomogram improved predictive accuracy. For user convenience, both the model and nomogram are accessible online. Patients in the high‐AIDPI group exhibited chemoresistance, coupled with overexpression of MYC and SQLE , increased mTORC1 signalling, disrupted PI3K–Akt signalling, and diminished immune infiltration. ScRNA‐seq revealed high expression of MYC and SQLE in OSA cells. Elevated SQLE expression correlated with chemoresistance and worse outcomes in OSA patients. Therapeutically, silencing SQLE suppressed OSA malignancy and enhanced chemosensitivity, mediated by cholesterol depletion and suppression of the FAK/PI3K/Akt/mTOR pathway. Furthermore, the SQLE‐specific inhibitor FR194738 demonstrated anti‐OSA effects in vivo and exhibited synergistic effects with chemotherapeutic agents. Conclusions AIDPI is a robust biomarker for identifying the high‐risk subset of OSA patients. The SQLE protein emerges as a metabolic vulnerability in these patients, providing a target with translational potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
DDDD发布了新的文献求助10
2秒前
2秒前
无名氏应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
4秒前
殷勤的紫槐应助科研通管家采纳,获得300
4秒前
浮游应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
fiu~完成签到 ,获得积分10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
wy.he应助科研通管家采纳,获得20
4秒前
4秒前
4秒前
4秒前
花花完成签到 ,获得积分10
4秒前
5秒前
bellapp完成签到 ,获得积分10
5秒前
胡涂图发布了新的文献求助10
6秒前
粥粥完成签到,获得积分10
6秒前
烩面大厨卡厄斯兰那完成签到,获得积分10
8秒前
8秒前
小救星发布了新的文献求助10
8秒前
十三发布了新的文献求助10
9秒前
June完成签到,获得积分10
10秒前
12秒前
14秒前
benj完成签到,获得积分10
16秒前
16秒前
会飞的猪完成签到,获得积分10
17秒前
药成功发布了新的文献求助30
17秒前
bkagyin应助Luna采纳,获得10
18秒前
尚雅芳完成签到,获得积分10
20秒前
WBTT发布了新的文献求助10
21秒前
HaohaoLi完成签到,获得积分10
21秒前
22秒前
ZZ发布了新的文献求助10
22秒前
协和_子鱼完成签到,获得积分0
22秒前
粥粥发布了新的文献求助10
22秒前
街灯夜港完成签到,获得积分10
23秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339111
求助须知:如何正确求助?哪些是违规求助? 4476035
关于积分的说明 13930277
捐赠科研通 4371446
什么是DOI,文献DOI怎么找? 2401889
邀请新用户注册赠送积分活动 1394887
关于科研通互助平台的介绍 1366715