平流
基本再生数
水传播病
扩散
期限(时间)
反应扩散系统
边界(拓扑)
论证(复杂分析)
统计物理学
应用数学
数学
数学分析
生态学
生物
物理
热力学
人口
人口学
社会学
量子力学
生物化学
水质
作者
Wei Wang,Xiaotong Wang,Xiaoting Fan
标识
DOI:10.1142/s1793524523501061
摘要
To investigate the effects of environmental pollution and human behavior change on waterborne diseases, we propose a reaction-advection-diffusion waterborne disease model with a general boundary condition, which incorporates human hosts and reservoir aquatic of pathogen. We identify the basic reproduction number [Formula: see text] and discuss its asymptotic properties. We prove its threshold role: if [Formula: see text], the disease-free periodic solution is globally attractive; if [Formula: see text], the model system is uniformly persistent; if [Formula: see text], the disease-free steady state is globally asymptotically stable without the advection term, in which the proof is quite challenging due to human behavior change.
科研通智能强力驱动
Strongly Powered by AbleSci AI