A class of inverse curvature flows and 𝐿^{𝑝} dual Christoffel-Minkowski problem

算法 人工智能 计算机科学
作者
Shanwei Ding,Guanghan Li
出处
期刊:Transactions of the American Mathematical Society [American Mathematical Society]
标识
DOI:10.1090/tran/8793
摘要

In this paper, we consider a large class of expanding flows of closed, smooth, star-shaped hypersurface in Euclidean space R n + 1 \mathbb {R}^{n+1} with speed ψ u α ρ δ f β \psi u^\alpha \rho ^\delta f^{-\beta } , where ψ \psi is a smooth positive function on unit sphere, u u is the support function of the hypersurface, ρ \rho is the radial function, f f is a smooth, symmetric, homogenous of degree one, positive function of the principal curvatures of the hypersurface on a convex cone. When ψ = 1 \psi =1 , we prove that the flow exists for all time and converges to infinity if α + δ + β 1 \alpha +\delta +\beta \leqslant 1 , and α 0 > β \alpha \leqslant 0>\beta , while in case α + δ + β > 1 \alpha +\delta +\beta >1 , α , δ 0 > β \alpha ,\delta \leqslant 0>\beta , the flow blows up in finite time, and where we assume the initial hypersurface to be strictly convex. In both cases the properly rescaled flows converge to a sphere centered at the origin. In particular, the results of Gerhardt [J. Differential Geom. 32 (1990), pp. 299–314; Calc. Var. Partial Differential Equations 49 (2014), pp. 471–489] and Urbas [Math. Z. 205 (1990), pp. 355–372] can be recovered by putting α = δ = 0 \alpha =\delta =0 . Our previous works [Proc. Amer. Math. Soc. 148 (2020), pp. 5331–5341; J. Funct. Anal. 282 (2022), p. 38] and Hu, Mao, Tu and Wu [J. Korean Math. Soc. 57 (2020), pp. 1299–1322] can be recovered by putting δ = 0 \delta =0 and α = 0 \alpha =0 respectively. By the convergence of these flows, we can give a new proof of uniqueness theorems for solutions to L p L^p -Minkowski problem and L p L^p -Christoffel-Minkowski problem with constant prescribed data. Similarly, we consider the L p L^p dual Christoffel-Minkowski problem and prove a uniqueness theorem for solutions to L p L^p dual Minkowski problem and L p L^p dual Christoffel-Minkowski problem with constant prescribed data. At last, we focus on the long time existence and convergence of a class of anisotropic flows (i.e. for general function ψ \psi ). The final result not only gives a new proof of many previously known solutions to L p L^p dual Minkowski problem, L p L^p -Christoffel-Minkowski problem, etc. by such anisotropic flows, but also provides solutions to L p L^p dual Christoffel-Minkowski problem with some conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助科研通管家采纳,获得10
刚刚
wy.he应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
sjy发布了新的文献求助20
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
1秒前
赘婿应助fmmuxiaoqiang采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
dmy应助科研通管家采纳,获得10
1秒前
3927456843应助科研通管家采纳,获得20
1秒前
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得200
2秒前
烟花应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
IVY1300发布了新的文献求助10
2秒前
冷静千柔完成签到 ,获得积分10
3秒前
积极南琴完成签到,获得积分10
3秒前
Hina完成签到,获得积分10
3秒前
3秒前
顺利的爆米花完成签到 ,获得积分10
4秒前
5秒前
清浅完成签到,获得积分10
5秒前
5秒前
6秒前
矮小的宫苴完成签到,获得积分10
6秒前
赵丫丫发布了新的文献求助10
7秒前
谦让不二应助张二十八采纳,获得50
7秒前
8秒前
z小侠完成签到,获得积分10
8秒前
lxkx发布了新的文献求助10
9秒前
快乐的胖子应助斯奈克采纳,获得30
9秒前
marxing发布了新的文献求助10
10秒前
xiaoman发布了新的文献求助30
11秒前
11秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4239110
求助须知:如何正确求助?哪些是违规求助? 3772832
关于积分的说明 11848487
捐赠科研通 3428675
什么是DOI,文献DOI怎么找? 1881700
邀请新用户注册赠送积分活动 933863
科研通“疑难数据库(出版商)”最低求助积分说明 840611