Prediction, Uncertainty Quantification, and ANN-Assisted Operation of Anaerobic Digestion Guided by Entropy Using Machine Learning

作者
Zhipeng Zhuang,Xiaoshan Liu,Ziwen Li,Y. A. Liu,Dalin Li
出处
期刊:Entropy [MDPI AG]
卷期号:27 (12): 1233-1233
标识
DOI:10.3390/e27121233
摘要

Anaerobic digestion (AD) is a nonlinear and disturbance-sensitive process in which instability is often induced by feedstock variability and biological fluctuations. To address this challenge, this study develops an entropy-guided machine learning framework that integrates parameter prediction, uncertainty quantification, and entropy-based evaluation of AD operation. Using six months of industrial data (~10,000 samples), three models—support vector machine (SVM), random forest (RF), and artificial neural network (ANN)—were compared for predicting biogas yield, fermentation temperature, and volatile fatty acid (VFA) concentration. The ANN achieved the highest performance (accuracy = 96%, F1 = 0.95, root mean square error (RMSE) = 1.2 m3/t) and also exhibited the lowest prediction error entropy, indicating reduced uncertainty compared to RF and SVM. Feature entropy and permutation analysis consistently identified feed solids, organic matter, and feed rate as the most influential variables (>85% contribution), in agreement with the RF importance ranking. When applied as a real-time prediction and decision-support tool in the plant (“sensor → prediction → programmable logic controller (PLC)/operation → feedback”), the ANN model was associated with a reduction in gas-yield fluctuation from approximately ±18% to ±5%, a decrease in process entropy, and an improvement in operational stability of about 23%. Techno-economic and life-cycle assessments further indicated a 12–15 USD/t lower operating cost, 8–10% energy savings, and 5–7% CO2 reduction compared with baseline operation. Overall, this study demonstrates that combining machine learning with entropy-based uncertainty analysis offers a reliable and interpretable pathway for more stable and low-carbon AD operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研摸鱼怪完成签到,获得积分10
1秒前
Ale发布了新的文献求助10
3秒前
追风发布了新的文献求助10
3秒前
3秒前
李健的小迷弟应助Autism采纳,获得10
3秒前
李健的小迷弟应助1433223采纳,获得10
4秒前
4秒前
4秒前
绿柏发布了新的文献求助10
4秒前
艾卡西亚暴雨完成签到,获得积分10
5秒前
徐彬武发布了新的文献求助10
5秒前
Ding发布了新的文献求助10
6秒前
黄景滨发布了新的文献求助10
7秒前
美好斓应助Lucien采纳,获得100
7秒前
安静完成签到 ,获得积分10
7秒前
7秒前
开拓者完成签到,获得积分10
7秒前
小荔枝完成签到,获得积分10
9秒前
LAM发布了新的文献求助10
9秒前
9秒前
a379896033完成签到 ,获得积分10
10秒前
wanglu完成签到,获得积分10
10秒前
Vino完成签到,获得积分10
12秒前
我是老大应助年华采纳,获得10
12秒前
研友_VZG7GZ应助流萤采纳,获得10
12秒前
句号0完成签到,获得积分10
12秒前
12秒前
降临发布了新的文献求助10
13秒前
13秒前
火星上的如松完成签到,获得积分10
15秒前
傻呼呼发布了新的文献求助10
17秒前
盒子完成签到,获得积分20
17秒前
旺仔小馒头完成签到,获得积分10
18秒前
18秒前
小黑发布了新的文献求助100
19秒前
哈哈哈大赞完成签到,获得积分10
19秒前
佘尉发布了新的文献求助20
20秒前
20秒前
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601299
求助须知:如何正确求助?哪些是违规求助? 4686815
关于积分的说明 14846229
捐赠科研通 4680459
什么是DOI,文献DOI怎么找? 2539291
邀请新用户注册赠送积分活动 1506167
关于科研通互助平台的介绍 1471283