CT Radiomics-Based Nomogram for Predicting the Lateral Neck Lymph Node Metastasis in Papillary Thyroid Carcinoma: A Prospective Multicenter Study

列线图 接收机工作特性 医学 无线电技术 放射科 甲状腺癌 淋巴结 前瞻性队列研究 肿瘤科 内科学 甲状腺
作者
Luchao Dong,Han Xiao,Pengyi Yu,Wenbin Zhang,Cai Wang,Qi Sun,Fei Song,Haicheng Zhang,Guibin Zheng,Ning Mao,Xicheng Song
出处
期刊:Academic Radiology [Elsevier]
卷期号:30 (12): 3032-3046 被引量:13
标识
DOI:10.1016/j.acra.2023.03.039
摘要

This study is based on multicenter cohorts and aims to utilize computed tomography (CT) images to construct a radiomics nomogram for predicting the lateral neck lymph node (LNLN) metastasis in the papillary thyroid carcinoma (PTC) and further explore the biological basis under its prediction.In the multicenter study, 1213 lymph nodes from 409 patients with PTC who underwent CT examinations and received open surgery and lateral neck dissection were included. A prospective test cohort was used in validating the model. Radiomics features were extracted from the CT images of each patient's LNLNs. Selectkbest, maximum relevance and minimum redundancy and the least absolute shrinkage and selection operator (LASSO) algorithm were used in reducing the dimensionality of radiomics features in the training cohort. Then, a radiomics signature (Rad-score) was calculated as the sum of each feature multiplied by the nonzero coefficient from LASSO. A nomogram was generated using the clinical risk factors of the patients and Rad-score. The nomograms' performance was analyzed in terms of accuracy, sensitivity, specificity, confusion matrix, receiver operating characteristic curves, and areas under the receiver operating characteristic curve (AUCs). The clinical usefulness of the nomogram was evaluated by decision curve analysis. Moreover, three radiologists with different working experiences and nomogram were compared to one another. Whole transcriptomics sequencing was performed in 14 tumor samples; the correlation of biological functions and high and low LNLN samples predicted by the nomogram was further investigated.A total of 29 radiomics features were used in constructing the Rad-score. Rad-score and clinical risk factors (age, tumor diameter, location and number of suspected tumors) compose the nomogram. The nomogram exhibited good discrimination performance of the nomogram for predicting LNLN metastasis in the training cohort (AUC, 0.866), internal test cohort (0.845), external test cohort (0.725), and prospective test cohort (0.808) and showed diagnostic capability comparable to senior radiologists, significantly outperforming junior radiologists (p < 0.05). Functional enrichment analysis suggested that the nomogram can reflect the ribosome-related structures of cytoplasmic translation in patients with PTC.Our radiomics nomogram provides a noninvasive method that incorporates radiomics features and clinical risk factors for predicting LNLN metastasis in patients with PTC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
窦慕卉完成签到,获得积分10
刚刚
刚刚
1秒前
qianqina发布了新的文献求助10
1秒前
ZZ完成签到,获得积分10
2秒前
2秒前
hzh完成签到,获得积分10
2秒前
hnl完成签到,获得积分10
3秒前
WZC发布了新的文献求助10
3秒前
端庄的白开水完成签到,获得积分10
3秒前
霸气沛文发布了新的文献求助10
4秒前
wanci应助苏苏采纳,获得10
4秒前
贪玩飞珍发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
Pigmentuman完成签到,获得积分10
5秒前
qianqina完成签到,获得积分10
5秒前
ss关闭了ss文献求助
6秒前
窦慕卉发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
Fall完成签到,获得积分10
8秒前
上官若男应助Twen采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
受伤的中蓝完成签到 ,获得积分10
9秒前
陈陈陈发布了新的文献求助10
9秒前
songnvshi完成签到 ,获得积分10
9秒前
hyw发布了新的文献求助10
10秒前
10秒前
mdmdd发布了新的文献求助10
10秒前
Orange应助木子之水采纳,获得10
11秒前
12秒前
无情飞松发布了新的文献求助10
13秒前
13秒前
15秒前
15秒前
机灵曼荷完成签到,获得积分10
16秒前
ironyss发布了新的文献求助10
16秒前
yang发布了新的文献求助10
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5704813
求助须知:如何正确求助?哪些是违规求助? 5158878
关于积分的说明 15242939
捐赠科研通 4858662
什么是DOI,文献DOI怎么找? 2607392
邀请新用户注册赠送积分活动 1558393
关于科研通互助平台的介绍 1516137