金属锂
电解质
材料科学
电极
锂(药物)
对偶(语法数字)
合理设计
控制重构
金属
化学工程
光电子学
纳米技术
化学
计算机科学
冶金
物理化学
工程类
医学
艺术
文学类
嵌入式系统
内分泌学
作者
Yiming Zhang,Yu Cao,Baoshan Zhang,Haochen Gong,Shaojie Zhang,Xiaoyi Wang,Xinpeng Han,Shuo Liu,Ming Yang,Wensheng Yang,Jie Sun
出处
期刊:ACS Nano
[American Chemical Society]
日期:2024-05-22
卷期号:18 (22): 14764-14778
被引量:25
标识
DOI:10.1021/acsnano.4c04517
摘要
High-energy-density lithium-metal batteries (LMBs) coupling lithium-metal anodes and high-voltage cathodes are hindered by unstable electrode/electrolyte interphases (EEIs), which calls for the rational design of efficient additives. Herein, we analyze the effect of electron structure on the coordination ability and energy levels of the additive, from the aspects of intramolecular electron cloud density and electron delocalization, to reveal its mechanism on solvation structure, redox stability, as-formed EEI chemistry, and electrochemical performances. Furthermore, we propose an electron reconfiguration strategy for molecular engineering of additives, by taking sorbide nitrate (SN) additive as an example. The lone pair electron-rich group enables strong interaction with the Li ion to regulate solvation structure, and intramolecular electron delocalization yields further positive synergistic effects. The strong electron-withdrawing nitrate moiety decreases the electron cloud density of the ether-based backbone, improving the overall oxidation stability and cathode compatibility, anchoring it as a reliable cathode/electrolyte interface (CEI) framework for cathode integrity. In turn, the electron-donating bicyclic-ring-ether backbone breaks the inherent resonance structure of nitrate, facilitating its reducibility to form a N-contained and inorganic Li2O-rich solid electrolyte interface (SEI) for uniform Li deposition. Optimized physicochemical properties and interfacial biaffinity enable significantly improved electrochemical performance. High rate (10 C), low temperature (-25 °C), and long-term stability (2700 h) are achieved, and a 4.5 Ah level Li||NCM811 multilayer pouch cell under harsh conditions is realized with high energy density (462 W h/kg). The proof of concept of this work highlights that the rational ingenious molecular design based on electron structure regulation represents an energetic strategy to modulate the electrolyte and interphase stability, providing a realistic reference for electrolyte innovations and practical LMBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI