已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Learning Models for Fine-Scale Climate Change Prediction: Enhancing Spatial and Temporal Resolution Using AI

比例(比率) 气候变化 空间生态学 人工智能 环境科学 时间尺度 气候学 计算机科学 地理 地图学 地质学 海洋学 生态学 生物
作者
Gagan Deep,Jyoti Verma
出处
期刊:Advances in geographical and environmental sciences 卷期号:: 81-100 被引量:1
标识
DOI:10.1007/978-981-97-1685-2_5
摘要

Climate change prediction is a critical aspect of understanding and mitigating the impacts of global environmental changes. This chapter provides an in-depth overview of deep learning models specifically designed for fine-scale climate change prediction, with a primary focus on improving spatial and temporal resolution. The notion of deep learning and its applicability to studies on climate change are introduced at the beginning of the chapter. It examines the special powers of deep learning models, such as their capacity to draw significant characteristics from massive climate datasets and automatically identify intricate patterns. There is discussion of the application of recurrent neural networks (RNNs) and convolutional neural networks (CNNs) in climate modeling, highlighting their potential in capturing spatial dependencies and temporal dynamics. Data preparation is a crucial component of deep learning models for predicting climate change. The chapter delves into various preprocessing techniques, such as data normalization, feature engineering, and dimensionality reduction, that aid in optimizing model performance. Additionally, the chapter explores downscaling methods that utilize deep learning to enhance the resolution of climate data, enabling more accurate predictions at localized levels. The application of super-resolution mapping using deep learning techniques is also discussed, showcasing its potential in generating high-resolution climate maps from low-resolution inputs. To show the value of deep learning models in fine-scale climate change prediction, a number of case studies and real-world examples are provided. Furthermore, the chapter addresses the performance evaluation metrics and methodologies for assessing the accuracy and reliability of deep learning models in climate prediction. Lastly, the chapter outlines future research directions and potential advancements in deep learning for fine-scale climate change prediction. The chapter concludes by highlighting the significance of deep learning models in advancing our understanding of climate change dynamics and aiding decision-making processes for sustainable environmental management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
sissiarno应助科研通管家采纳,获得100
2秒前
3秒前
JK发布了新的文献求助10
4秒前
Agoni发布了新的文献求助10
8秒前
wz完成签到 ,获得积分10
14秒前
赘婿应助赵三岁采纳,获得10
16秒前
20秒前
21秒前
ddm完成签到 ,获得积分10
22秒前
峰feng完成签到 ,获得积分10
23秒前
26秒前
齐桉完成签到 ,获得积分10
29秒前
31秒前
32秒前
田様应助谦让的小甜瓜采纳,获得10
33秒前
李lll发布了新的文献求助10
37秒前
踏实的匪发布了新的文献求助10
37秒前
39秒前
plucky发布了新的文献求助50
40秒前
wanci应助李lll采纳,获得10
41秒前
42秒前
满满发布了新的文献求助10
44秒前
Akim应助踏实的匪采纳,获得10
45秒前
45秒前
暴躁的元灵完成签到 ,获得积分10
46秒前
追寻极光发布了新的文献求助10
46秒前
47秒前
科研通AI2S应助Cindy采纳,获得10
49秒前
yyt发布了新的文献求助10
52秒前
zzz完成签到 ,获得积分10
55秒前
58秒前
在水一方应助lxy采纳,获得50
1分钟前
mm完成签到 ,获得积分10
1分钟前
sunrise完成签到,获得积分10
1分钟前
脑洞疼应助谢青采纳,获得10
1分钟前
1分钟前
lqqq完成签到 ,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Digital predistortion of memory polynomial systems using direct and indirect learning architectures 500
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3916463
求助须知:如何正确求助?哪些是违规求助? 3461982
关于积分的说明 10919871
捐赠科研通 3188786
什么是DOI,文献DOI怎么找? 1762797
邀请新用户注册赠送积分活动 853187
科研通“疑难数据库(出版商)”最低求助积分说明 793716