Comparing remote sensing-based forest biomass mapping approaches using new forest inventory plots in contrasting forests in northeastern and southwestern China

森林资源清查 中国 生物量(生态学) 地理 林业 遥感 农林复合经营 环境科学 森林经营 生态学 考古 生物
作者
Wenquan Dong,Edward T. A. Mitchard,Yuwei Chen,Man Chen,Congfeng Cao,Peilun Hu,C. K. Xu,Steven Hancock
出处
期刊:Cornell University - arXiv 被引量:2
标识
DOI:10.48550/arxiv.2405.15438
摘要

Large-scale high spatial resolution aboveground biomass (AGB) maps play a crucial role in determining forest carbon stocks and how they are changing, which is instrumental in understanding the global carbon cycle, and implementing policy to mitigate climate change. The advent of the new space-borne LiDAR sensor, NASA's GEDI instrument, provides unparalleled possibilities for the accurate and unbiased estimation of forest AGB at high resolution, particularly in dense and tall forests, where Synthetic Aperture Radar (SAR) and passive optical data exhibit saturation. However, GEDI is a sampling instrument, collecting dispersed footprints, and its data must be combined with that from other continuous cover satellites to create high-resolution maps, using local machine learning methods. In this study, we developed local models to estimate forest AGB from GEDI L2A data, as the models used to create GEDI L4 AGB data incorporated minimal field data from China. We then applied LightGBM and random forest regression to generate wall-to-wall AGB maps at 25 m resolution, using extensive GEDI footprints as well as Sentinel-1 data, ALOS-2 PALSAR-2 and Sentinel-2 optical data. Through a 5-fold cross-validation, LightGBM demonstrated a slightly better performance than Random Forest across two contrasting regions. However, in both regions, the computation speed of LightGBM is substantially faster than that of the random forest model, requiring roughly one-third of the time to compute on the same hardware. Through the validation against field data, the 25 m resolution AGB maps generated using the local models developed in this study exhibited higher accuracy compared to the GEDI L4B AGB data. We found in both regions an increase in error as slope increased. The trained models were tested on nearby but different regions and exhibited good performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
jia发布了新的文献求助30
2秒前
桐桐应助星星采纳,获得10
2秒前
今后应助舒心的曲奇采纳,获得10
9秒前
Zziiixl完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
Akim应助张子儒采纳,获得10
12秒前
12秒前
共享精神应助毅诚菌采纳,获得10
12秒前
风枞完成签到 ,获得积分10
13秒前
卡列林完成签到,获得积分10
13秒前
明理的天蓝完成签到,获得积分20
14秒前
jia完成签到,获得积分10
14秒前
15秒前
aaa发布了新的文献求助10
16秒前
16秒前
赵润泽完成签到 ,获得积分10
16秒前
17秒前
卡列林发布了新的文献求助10
18秒前
20秒前
ycp完成签到,获得积分10
20秒前
星星发布了新的文献求助10
20秒前
科研通AI6应助天马采纳,获得10
21秒前
可靠三问完成签到,获得积分10
21秒前
21秒前
21秒前
张子儒完成签到,获得积分20
21秒前
23秒前
李爱国应助沐梓采纳,获得10
24秒前
25秒前
Lmy发布了新的文献求助10
25秒前
张子儒发布了新的文献求助10
25秒前
25秒前
26秒前
冷酷鹤轩完成签到,获得积分20
27秒前
打打应助踏实的大神采纳,获得10
27秒前
科研通AI6应助小金鱼采纳,获得10
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638590
求助须知:如何正确求助?哪些是违规求助? 4745991
关于积分的说明 15003117
捐赠科研通 4796648
什么是DOI,文献DOI怎么找? 2562888
邀请新用户注册赠送积分活动 1522139
关于科研通互助平台的介绍 1481928