亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Investigating the effects and mechanisms of Erchen Decoction in the treatment of colorectal cancer by network pharmacology and experimental validation

小桶 药物数据库 系统药理学 交互网络 生物 计算生物学 基因本体论 机制(生物学) 结直肠癌 药理学 基因 癌症 基因表达 遗传学 药品 哲学 认识论
作者
Yanfei Shao,Jingxian Chen,Yujie Hu,Yuan Wu,Hualin Zeng,Song Lin,Qiying Lai,Xiaodong Fan,Xueliang Zhou,Min Zheng,Bizhen Gao,Jing Sun
出处
期刊:Frontiers in Pharmacology [Frontiers Media]
卷期号:13 被引量:2
标识
DOI:10.3389/fphar.2022.1000639
摘要

Objective: Erchen Decoction (ECD), a well-known traditional Chinese medicine, exerts metabolism-regulatory, immunoregulation, and anti-tumor effects. However, the action and pharmacological mechanism of ECD remain largely unclear. In the present study, we explored the effects and mechanisms of ECD in the treatment of CRC using network pharmacology, molecular docking, and systematic experimental validation. Methods: The active components of ECD were obtained from the TCMSP database and the potential targets of them were annotated by the STRING database. The CRC-related targets were identified from different databases (OMIM, DisGeNet, GeneCards, and DrugBank). The interactive targets of ECD and CRC were screened and the protein-protein interaction (PPI) networks were constructed. Then, the hub interactive targets were calculated and visualized from the PPI network using the Cytoscape software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. In addition, the molecular docking was performed. Finally, systematic in vitro, in vivo and molecular biology experiments were performed to further explore the anti-tumor effects and underlying mechanisms of ECD in CRC. Results: A total of 116 active components and 246 targets of ECD were predicted based on the component-target network analysis. 2406 CRC-related targets were obtained from different databases and 140 intersective targets were identified between ECD and CRC. 12 hub molecules (STAT3, JUN, MAPK3, TP53, MAPK1, RELA, FOS, ESR1, IL6, MAPK14, MYC, and CDKN1A) were finally screened from PPI network. GO and KEGG pathway enrichment analyses demonstrated that the biological discrepancy was mainly focused on the tumorigenesis-, immune-, and mechanism-related pathways. Based on the experimental validation, ECD could suppress the proliferation of CRC cells by inhibiting cell cycle and promoting cell apoptosis. In addition, ECD could inhibit tumor growth in mice. Finally, the results of molecular biology experiments suggested ECD could regulate the transcriptional levels of several hub molecules during the development of CRC, including MAPKs, PPARs, TP53, and STATs. Conclusion: This study revealed the potential pharmacodynamic material basis and underlying molecular mechanisms of ECD in the treatment of CRC, providing a novel insight for us to find more effective anti-CRC drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星上宛秋完成签到 ,获得积分10
26秒前
28秒前
ckn完成签到,获得积分10
36秒前
搜集达人应助瘦瘦毛豆采纳,获得10
58秒前
1分钟前
瘦瘦毛豆发布了新的文献求助10
1分钟前
1分钟前
1分钟前
燚龘完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
华仔应助科研通管家采纳,获得10
1分钟前
燚龘发布了新的文献求助10
1分钟前
only完成签到,获得积分10
2分钟前
瘦瘦毛豆发布了新的文献求助10
2分钟前
2分钟前
2分钟前
3分钟前
DELI完成签到 ,获得积分10
3分钟前
zl13332完成签到 ,获得积分10
3分钟前
在水一方应助瘦瘦毛豆采纳,获得10
4分钟前
4分钟前
万能图书馆应助寂寞致幻采纳,获得10
5分钟前
李李李完成签到,获得积分10
5分钟前
5分钟前
Sylvia卉完成签到,获得积分20
5分钟前
寂寞致幻完成签到,获得积分10
5分钟前
寂寞致幻发布了新的文献求助10
5分钟前
脑洞疼应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
小二郎应助玛卡巴卡采纳,获得10
5分钟前
瘦瘦毛豆发布了新的文献求助10
5分钟前
LANER完成签到 ,获得积分10
5分钟前
5分钟前
所所应助王讯采纳,获得10
6分钟前
6分钟前
王讯发布了新的文献求助10
6分钟前
6分钟前
6分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 720
Battery Management Systems, Volume lll: Physics-Based Methods 550
Corpus Linguistics for Language Learning Research 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4136271
求助须知:如何正确求助?哪些是违规求助? 3672998
关于积分的说明 11611426
捐赠科研通 3368282
什么是DOI,文献DOI怎么找? 1850400
邀请新用户注册赠送积分活动 913810
科研通“疑难数据库(出版商)”最低求助积分说明 828940