清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learning approach to map the thermal conductivity of over 2,000 neoteric solvents for green energy storage applications

材料科学 共晶体系 热导率 离子液体 人工神经网络 工作(物理) 热的 化学空间 热能储存 计算机科学 工艺工程 机器学习 复合材料 热力学 有机化学 化学 工程类 合金 催化作用 物理 药物发现 生物化学
作者
Tarek Lemaoui,Ahmad S. Darwish,Ghaiath Almustafa,Abir Boublia,P.R. Sarika,Nabil Abdel Jabbar,Taleb Ibrahim,Paul Nancarrow,Krishna Kumar Yadav,Ahmed M. Fallatah,Mohamed Abbas,Jari S. Algethami,Yacine Benguerba,Byong‐Hun Jeon,Fawzi Banat,Inas M. AlNashef
出处
期刊:Energy Storage Materials [Elsevier BV]
卷期号:59: 102795-102795 被引量:52
标识
DOI:10.1016/j.ensm.2023.102795
摘要

Interest in green neoteric solvents, such as ionic liquids (ILs) and deep eutectic solvents (DESs), has increased dramatically in recent years due to their highly tunable properties. One application that has stimulated many experimental studies is their use as green solvents in energy and heat storage. Nevertheless, their theoretically infinite chemical space hinders their practical application and makes it impossible to conclude universal laws regarding their feasibility. Herein, for the first time, we combine molecular modeling and machine learning (ML) to develop a holistic tool that can map the thermal conductivity space of both ILs and DESs to bring their use as green solvents into industrial reality. Two molecular representations were used: the σ-profiles (σp) and the critical properties (CPs). In addition, six ML algorithms were evaluated, and the results showed that artificial neural networks (ANNs) demonstrated fast and accurate predictions of the thermal conductivity space with R2 values of 0.995 and 0.991 using σp and CPs, respectively. The ANNs were further experimentally validated by additional measurements of 5 ILs and 5 DESs, which have not been previously reported in the literature. The results showed an excellent agreement, with deviations of only 2.82% and 2.71% using σp and CPs, respectively. Subsequently, the ANNs were used to successfully screen 1,156 ILs and 1,125 DESs to demonstrate a guided molecular design to achieve different thermal conductivity values. The proposed ANNs were also loaded into an easy-to-use spreadsheet included in the Supplementary materials. This work showcases the power of data-centric modeling for predicting the chemical spaces of ILs and DESs to promote their use as green solvents for various potential applications, including energy storage, fuel cells, and carbon dioxide capture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助彩色的芷容采纳,获得10
2秒前
4秒前
寒风发布了新的文献求助30
10秒前
胜胜糖完成签到 ,获得积分10
10秒前
15秒前
Waymaker发布了新的文献求助10
18秒前
20秒前
在水一方应助彩色的芷容采纳,获得10
21秒前
量子星尘发布了新的文献求助10
24秒前
寒风完成签到,获得积分10
25秒前
Gary完成签到 ,获得积分10
29秒前
小二郎应助彩色的芷容采纳,获得10
45秒前
45秒前
59秒前
英姑应助彩色的芷容采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
钮傲白发布了新的文献求助30
1分钟前
Waymaker完成签到 ,获得积分10
1分钟前
痞子王完成签到 ,获得积分10
1分钟前
李健应助彩色的芷容采纳,获得10
1分钟前
科研佟完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Fezz完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
搜集达人应助雪山飞龙采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
雪山飞龙发布了新的文献求助10
2分钟前
南风完成签到 ,获得积分10
2分钟前
lilaccalla完成签到 ,获得积分10
2分钟前
2分钟前
Yy完成签到 ,获得积分10
2分钟前
SYLH应助jun采纳,获得20
2分钟前
量子星尘发布了新的文献求助10
2分钟前
七仔完成签到 ,获得积分10
2分钟前
2分钟前
bzdjsmw完成签到 ,获得积分10
2分钟前
2分钟前
姚芭蕉完成签到 ,获得积分0
2分钟前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
The Psychology of Advertising (5th edition) 500
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3865751
求助须知:如何正确求助?哪些是违规求助? 3408343
关于积分的说明 10657160
捐赠科研通 3132318
什么是DOI,文献DOI怎么找? 1727549
邀请新用户注册赠送积分活动 832351
科研通“疑难数据库(出版商)”最低求助积分说明 780242