A universal strategy for the construction of polymer brush hybrid non-glutaraldehyde heart valves with robust anti-biological contamination performance and improved endothelialization potential

戊二醛 生物相容性 材料科学 钙化 表面改性 生物医学工程 化学 医学 有机化学 病理 物理化学 冶金
作者
Tao Yu,Zheng Cheng,Xiaotong Chen,Hongxia Pu,Gaocan Li,Qing Jiang,Yunbing Wang,Yingqiang Guo
出处
期刊:Acta Biomaterialia [Elsevier BV]
卷期号:160: 87-97
标识
DOI:10.1016/j.actbio.2023.02.009
摘要

With the intensification of the aging population and the development of transcatheter heart valve replacement technology (THVR), clinical demand for bioprosthetic valves is increasing rapidly. However, commercial bioprosthetic heart valves (BHVs), mainly manufactured from glutaraldehyde cross-linked porcine or bovine pericardium, generally undergo degeneration within 10-15 years due to calcification, thrombosis and poor biocompatibility, which are closely related to glutaraldehyde cross-linking. In addition, endocarditis caused by post-implantation bacterial infection also accelerates the failure of BHVs. Herein, a functional cross-linking agent bromo bicyclic-oxazolidine (OX-Br) has been designed and synthesized to crosslink BHVs and construct a bio-functionalization scaffold for subsequent in-situ atom transfer radical polymerization (ATRP). The porcine pericardium cross-linked by OX-Br (OX-PP) exhibits better biocompatibility and anti-calcification property than the glutaraldehyde-treated porcine pericardium (Glut-PP) as well as comparable physical and structural stability to Glut-PP. Furthermore, the resistance to biological contamination especially bacterial infection of OX-PP along with anti-thrombus and endothelialization need to be enhanced to reduce the risk of implantation failure due to infection. Therefore, amphiphilic polymer brush is grafted to OX-PP through in-situ ATRP polymerization to prepare polymer brush hybrid BHV material SA@OX-PP. SA@OX-PP has been demonstrated to significantly resist biological contamination including plasma proteins, bacteria, platelets, thrombus and calcium, and facilitate the proliferation of endothelial cells, resulting in reduced risk of thrombosis, calcification and endocarditis. Altogether, the proposed crosslinking and functionalization strategy synergistically achieves the improvement of stability, endothelialization potential, anti-calcification and anti-biofouling performances for BHVs, which would resist the degeneration and prolong the lifespan of BHVs. The facile and practical strategy has great potential for clinical application in fabricating functional polymer hybrid BHVs or other tissue-based cardiac biomaterials. STATEMENT OF SIGNIFICANCE: Bioprosthetic heart valves (BHVs) are widely used in valve replacements for severe heart valve disease, and clinical demand is increasing year over year. Unfortunately, the commercial BHVs, mainly cross-linked by glutaraldehyde, can serve for only 10-15 years because of calcification, thrombus, biological contamination, and difficulties in endothelialization. Many studies have been conducted to explore non-glutaraldehyde crosslinkers, but few can meet high requirements in all aspects. A new crosslinker, OX-Br, has been developed for BHVs. It can not only crosslink BHVs but also serve as a reactive site for in-situ ATRP polymerization and construct a bio-functionalization platform for subsequent modification. The proposed crosslinking and functionalization strategy synergistically achieves the high requirements for stability, biocompability, endothelialization, anti-calcification, and anti-biofouling propeties of BHVs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
Ayo发布了新的文献求助10
刚刚
CipherSage应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
菠萝蜜发布了新的文献求助10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
1秒前
zhanyuji发布了新的文献求助10
1秒前
1秒前
赵Zhao完成签到,获得积分10
1秒前
yy发布了新的文献求助10
1秒前
cdercder应助三个哈卡采纳,获得10
3秒前
华仔应助三个哈卡采纳,获得10
3秒前
慕青应助三个哈卡采纳,获得10
3秒前
慕青应助三个哈卡采纳,获得10
3秒前
爆米花应助三个哈卡采纳,获得10
3秒前
研友_nxwbrL发布了新的文献求助50
4秒前
5秒前
myn1990发布了新的文献求助10
5秒前
烂漫念柏完成签到,获得积分10
6秒前
6秒前
hope发布了新的文献求助10
6秒前
7秒前
kekekele完成签到,获得积分20
8秒前
9秒前
zizi发布了新的文献求助10
9秒前
文艺代灵发布了新的文献求助10
11秒前
科研通AI5应助zhanyuji采纳,获得10
11秒前
张明浪发布了新的文献求助10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Functional Polyimide Dielectrics: Structure, Properties, and Applications 450
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795197
求助须知:如何正确求助?哪些是违规求助? 3340150
关于积分的说明 10299013
捐赠科研通 3056688
什么是DOI,文献DOI怎么找? 1677141
邀请新用户注册赠送积分活动 805224
科研通“疑难数据库(出版商)”最低求助积分说明 762397