Landmark-Aware and Part-Based Ensemble Transfer Learning Network for Static Facial Expression Recognition from Images

地标 面部表情识别 计算机科学 人工智能 学习迁移 模式识别(心理学) 面部表情 语音识别 计算机视觉 面部识别系统
作者
Rohan Wadhawan,Tapan Kumar Gandhi
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:4 (2): 349-361 被引量:13
标识
DOI:10.1109/tai.2022.3172272
摘要

Facial expression recognition from images is a challenging problem in computer vision applications. Convolutional neural network (CNN), the state-of-the-art method for various computer vision tasks, has had limited success in predicting expressions from faces having extreme poses, illumination, and occlusion conditions. To mitigate this issue, CNNs are often accompanied by techniques like transfer, multitask, or ensemble learning that provide high accuracy at the cost of increased computational complexity. In this article, the authors propose a part-based ensemble transfer learning network that models how humans recognize facial expressions by correlating visual patterns emanating from facial muscles' motor movements with a specific expression. The proposed network performs transfer learning from facial landmark localization to facial expression recognition. It consists of five subnetworks, and each subnetwork performs transfer learning from one of the five subsets of facial landmarks: eyebrows, eyes, nose, mouth, or jaw to expression classification. The network's performance is evaluated using the Cohn-Kanade (CK+), Japanese female facial expression (JAFFE), and static facial expressions in the wild datasets, and it outperforms the benchmark for CK+ and JAFFE datasets by 0.51% and 5.34%, respectively. Additionally, the proposed ensemble network consists of only 1.65 M model parameters, ensuring computational efficiency during training and real-time deployment. Gradient-weighted class activation mapping visualizations of the network reveal the complementary nature of its subnetworks, a key design parameter of an effective ensemble network. Lastly, cross-dataset evaluation results show that the the proposed ensemble has a high generalization capacity, making it suitable for real-world usage.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘉叶完成签到,获得积分10
1秒前
1秒前
2秒前
刘佳佳完成签到 ,获得积分10
3秒前
Yoel完成签到,获得积分20
3秒前
5秒前
5秒前
Tzzl0226发布了新的文献求助30
7秒前
Gorge完成签到,获得积分10
8秒前
strawberry完成签到,获得积分10
9秒前
田様应助搞怪的熠彤采纳,获得10
9秒前
白白完成签到 ,获得积分10
9秒前
9秒前
一轮明月完成签到 ,获得积分10
10秒前
科研小白发布了新的文献求助10
10秒前
10秒前
隐形曼青应助LJT采纳,获得10
11秒前
是真的不吃鱼完成签到,获得积分20
12秒前
12秒前
咦呀完成签到,获得积分20
12秒前
xxxxxxxx发布了新的文献求助30
13秒前
Tzzl0226完成签到,获得积分10
13秒前
科研蚂蚁发布了新的文献求助10
14秒前
Chris完成签到,获得积分10
14秒前
小二郎应助安白采纳,获得10
15秒前
16秒前
胡多发布了新的文献求助10
17秒前
咦呀发布了新的文献求助10
17秒前
留胡子的紫槐完成签到,获得积分10
19秒前
灵兰QAQ完成签到,获得积分10
19秒前
20秒前
21秒前
蛋蛋1发布了新的文献求助10
21秒前
科研通AI5应助Yoel采纳,获得10
21秒前
科目三应助科研蚂蚁采纳,获得10
22秒前
melisa发布了新的文献求助10
23秒前
yaya完成签到 ,获得积分10
23秒前
rain发布了新的文献求助10
24秒前
hutian完成签到,获得积分10
24秒前
27秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Design and construction rules for mechanical components of FBR nuclear islands: RCC-MR. Tome 3: testing methods 460
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Mortality and adverse events of special interest with intravenous belimumab for adults with active, autoantibody-positive systemic lupus erythematosus (BASE): a multicentre, double-blind, randomised, placebo-controlled, phase 4 trial 390
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838438
求助须知:如何正确求助?哪些是违规求助? 3380785
关于积分的说明 10515798
捐赠科研通 3100383
什么是DOI,文献DOI怎么找? 1707474
邀请新用户注册赠送积分活动 821754
科研通“疑难数据库(出版商)”最低求助积分说明 772930