A sigmoid‐optimized encoder–decoder network for crack segmentation with copy‐edit‐paste transfer learning

计算机科学 编码器 乙状窦函数 分割 人工智能 初始化 平滑度 学习迁移 集合(抽象数据类型) 数据集 一般化 激活函数 模式识别(心理学) 计算机视觉 核(代数) 人工神经网络 数学 数学分析 组合数学 程序设计语言 操作系统
作者
Firdes Çelik,Markus König
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:37 (14): 1875-1890 被引量:39
标识
DOI:10.1111/mice.12844
摘要

Abstract The automatic recognition of cracks is an essential requirement for the cost‐efficient maintenance of concrete structures, such as bridges, buildings, and roads. It should allow the localization and the determination of the crack type and the evaluation of the crack severity by providing information on the shape, orientation, and crack area and width. The first step in this direction is the automatized segmentation of cracks. This paper provides a concrete crack data set (370 images) and proposes two solutions that achieve the best results on two different crack data sets. Our first solution concerns the segmentation architecture. We provide an encoder–decoder‐based network with a particular interconnection of layers between the encoder and decoder parts that outperforms several other methods. In addition, this network is enhanced by squeeze‐and‐excitation blocks equipped with a modified sigmoid activation function. We introduce a stretch coefficient into the sigmoid function and declare it a trainable parameter, allowing more differentiated calibration of the feature map during network training. Our second solution concerns kernel initialization by transfer learning (TL). We propose the Copy‐Edit‐Paste Transfer Learning (CEP TL). By copying, geometric editing, and pasting crack masks onto new concrete background images, we generate thousands of semisynthetic images used to pretrain the network. This CEP TL method increases model performance with significant differences. For data set A (ours), we achieve F 1 ‐scores 76.06 ± 0.06% without CEP TL and 92.32 ± 0.82% with CEP TL. For data set B (DeepCrack data set), we achieve F 1 ‐scores 88.56 ± 0.01% without CEP TL and 90.59 ± 0.80% with CEP TL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
plh发布了新的文献求助20
刚刚
abtitw完成签到,获得积分10
刚刚
xhz完成签到,获得积分10
刚刚
刚刚
1秒前
麻薯发布了新的文献求助10
1秒前
YoungLee发布了新的文献求助10
1秒前
急急急完成签到,获得积分10
1秒前
Han完成签到,获得积分10
2秒前
超级的三问完成签到,获得积分10
2秒前
U2完成签到,获得积分10
2秒前
Exile完成签到,获得积分10
2秒前
daheeeee完成签到,获得积分10
3秒前
123完成签到,获得积分10
3秒前
小艾完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
3秒前
故酒应助Jeffery426采纳,获得10
3秒前
老干部发布了新的文献求助10
4秒前
dhts完成签到,获得积分10
4秒前
5秒前
活泼啤酒完成签到 ,获得积分10
5秒前
whl完成签到,获得积分10
5秒前
5秒前
小项发布了新的文献求助30
6秒前
研友_8RlQ2n完成签到,获得积分10
6秒前
OuHou完成签到 ,获得积分10
6秒前
zqzyyds完成签到,获得积分20
6秒前
6秒前
Jess留下了新的社区评论
6秒前
feiying88完成签到,获得积分10
7秒前
7秒前
Dream完成签到,获得积分10
7秒前
平淡的文龙完成签到,获得积分10
7秒前
7秒前
阳光绝山完成签到,获得积分20
8秒前
讨厌胡萝卜完成签到,获得积分10
8秒前
marigold完成签到,获得积分10
8秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792855
求助须知:如何正确求助?哪些是违规求助? 3337361
关于积分的说明 10284619
捐赠科研通 3054083
什么是DOI,文献DOI怎么找? 1675772
邀请新用户注册赠送积分活动 803778
科研通“疑难数据库(出版商)”最低求助积分说明 761548