Real-time diabetic retinopathy screening by deep learning in a multisite national screening programme: a prospective interventional cohort study

糖尿病性视网膜病变 医学 眼底(子宫) 前瞻性队列研究 介绍 视网膜病变 验光服务 糖尿病 队列 眼科 家庭医学 儿科 外科 内科学 内分泌学
作者
Paisan Ruamviboonsuk,Richa Tiwari,Rory Sayres,Variya Nganthavee,Kornwipa Hemarat,Apinpat Kongprayoon,Rajiv Raman,Brian Levinstein,Yun Liu,Mike Schaekermann,Roy Lee,Sunny Virmani,Kasumi Widner,John C. Chambers,Fred Hersch,Lily Peng,Dale R. Webster
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:4 (4): e235-e244 被引量:163
标识
DOI:10.1016/s2589-7500(22)00017-6
摘要

Diabetic retinopathy is a leading cause of preventable blindness, especially in low-income and middle-income countries (LMICs). Deep-learning systems have the potential to enhance diabetic retinopathy screenings in these settings, yet prospective studies assessing their usability and performance are scarce.We did a prospective interventional cohort study to evaluate the real-world performance and feasibility of deploying a deep-learning system into the health-care system of Thailand. Patients with diabetes and listed on the national diabetes registry, aged 18 years or older, able to have their fundus photograph taken for at least one eye, and due for screening as per the Thai Ministry of Public Health guidelines were eligible for inclusion. Eligible patients were screened with the deep-learning system at nine primary care sites under Thailand's national diabetic retinopathy screening programme. Patients with a previous diagnosis of diabetic macular oedema, severe non-proliferative diabetic retinopathy, or proliferative diabetic retinopathy; previous laser treatment of the retina or retinal surgery; other non-diabetic retinopathy eye disease requiring referral to an ophthalmologist; or inability to have fundus photograph taken of both eyes for any reason were excluded. Deep-learning system-based interpretations of patient fundus images and referral recommendations were provided in real time. As a safety mechanism, regional retina specialists over-read each image. Performance of the deep-learning system (accuracy, sensitivity, specificity, positive predictive value [PPV], and negative predictive value [NPV]) were measured against an adjudicated reference standard, provided by fellowship-trained retina specialists. This study is registered with the Thai national clinical trials registry, TCRT20190902002.Between Dec 12, 2018, and March 29, 2020, 7940 patients were screened for inclusion. 7651 (96·3%) patients were eligible for study analysis, and 2412 (31·5%) patients were referred for diabetic retinopathy, diabetic macular oedema, ungradable images, or low visual acuity. For vision-threatening diabetic retinopathy, the deep-learning system had an accuracy of 94·7% (95% CI 93·0-96·2), sensitivity of 91·4% (87·1-95·0), and specificity of 95·4% (94·1-96·7). The retina specialist over-readers had an accuracy of 93·5 (91·7-95·0; p=0·17), a sensitivity of 84·8% (79·4-90·0; p=0·024), and specificity of 95·5% (94·1-96·7; p=0·98). The PPV for the deep-learning system was 79·2 (95% CI 73·8-84·3) compared with 75·6 (69·8-81·1) for the over-readers. The NPV for the deep-learning system was 95·5 (92·8-97·9) compared with 92·4 (89·3-95·5) for the over-readers.A deep-learning system can deliver real-time diabetic retinopathy detection capability similar to retina specialists in community-based screening settings. Socioenvironmental factors and workflows must be taken into consideration when implementing a deep-learning system within a large-scale screening programme in LMICs.Google and Rajavithi Hospital, Bangkok, Thailand.For the Thai translation of the abstract see Supplementary Materials section.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
潇洒一曲完成签到,获得积分10
1秒前
归尘发布了新的文献求助10
1秒前
万能图书馆应助小样子采纳,获得10
2秒前
lele发布了新的文献求助10
2秒前
谦让溪灵发布了新的文献求助20
2秒前
3秒前
单纯幻莲完成签到 ,获得积分10
4秒前
6秒前
6秒前
7秒前
7秒前
8秒前
晨曦完成签到,获得积分10
8秒前
兴奋芷完成签到,获得积分10
9秒前
归尘发布了新的文献求助10
9秒前
灵运完成签到,获得积分10
9秒前
动听服饰发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
JJS发布了新的文献求助10
11秒前
myq完成签到,获得积分10
11秒前
12秒前
hhh发布了新的文献求助10
13秒前
NexusExplorer应助奋斗的宛亦采纳,获得10
13秒前
曾文奕完成签到,获得积分10
15秒前
Sarahminn发布了新的文献求助10
15秒前
浮游应助舒心的芝麻采纳,获得10
15秒前
巴拉巴拉完成签到 ,获得积分10
16秒前
顾矜应助科研通管家采纳,获得10
16秒前
小马甲应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
16秒前
小二郎应助科研通管家采纳,获得10
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
小二郎应助科研通管家采纳,获得10
16秒前
无花果应助科研通管家采纳,获得50
16秒前
小马甲应助科研通管家采纳,获得10
17秒前
bkagyin应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950732
求助须知:如何正确求助?哪些是违规求助? 4213470
关于积分的说明 13104422
捐赠科研通 3995371
什么是DOI,文献DOI怎么找? 2186883
邀请新用户注册赠送积分活动 1202108
关于科研通互助平台的介绍 1115392