Machine Learning in the Diagnosis and Prognostic Prediction of Dental Caries: A Systematic Review

接收机工作特性 医学 梅德林 机器学习 列联表 荟萃分析 系统回顾 斯科普斯 协议(科学) 人工智能 医学物理学 内科学 计算机科学 病理 替代医学 法学 政治学
作者
Lilian Toledo Reyes,Jéssica Klöckner Knorst,Fernanda Ruffo Ortiz,Thiago Machado Ardenghi
出处
期刊:Caries Research [Karger Publishers]
卷期号:56 (3): 161-170 被引量:11
标识
DOI:10.1159/000524167
摘要

We performed a systematic review to evaluate the success of machine learning algorithms in the diagnosis and prognostic prediction of dental caries. The review protocol was a priori registered in the PROSPERO, CRD42020183447. The search involved electronic bibliographic databases: PubMed/Medline, Scopus, EMBASE, Web of Science, and grey literature until December 2020. We excluded review articles, case series, case reports, editorials, letters, comments, educational methodologies, assessments of robotic devices, and articles with less than 10 participants or specimens. Two independent reviewers selected the studies and performed the assessment of the methodological quality based on standardized scales. We summarize data on the machine learning algorithms used; software; performance outcomes such as accuracy/precision, sensitivity/recall, specificity, area under the receiver operating characteristic curve (AUC), and positive/negative predictive values related to dental caries. Meta-analyses were not performed due to methodological differences. Our review included 15 studies (10 diagnostic studies and 5 prognostic prediction studies). Cross-sectional design studies were predominant (12). The most frequently used statistical measure of performance reported in diagnostic studies was AUC value, which ranged from 0.745 to 0.987. For most diagnostic studies, data from contingency tables were not available. Reported sensitivities were higher in low risk of bias prognostic prediction studies (median [IQR] of 0.996 [0.971-1.000] vs. unclear/high risk of bias studies 0.189 [0-0.340]; p value 0.025). While there were no significant differences in the specificity between these subgroups, we concluded that the use of these technologies for the diagnosis and prognostic prediction of dental caries, although promising, is at an early stage. The general applicability of the evidence was limited given that most models were developed outside the real clinical setting with a prevalence of unclear/high risk of bias. Researchers must increase the overall quality of their research protocols by providing a comprehensive report on the methods implemented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
酷波er应助冷酷严青采纳,获得10
1秒前
2秒前
4秒前
Morch2021完成签到,获得积分10
5秒前
酷炫翠桃完成签到,获得积分10
5秒前
Kirito举报长情的飞凤求助涉嫌违规
6秒前
丰富的乐儿完成签到,获得积分10
7秒前
yabocai发布了新的文献求助10
7秒前
谦让的靖巧完成签到,获得积分20
8秒前
8秒前
爆米花应助longger采纳,获得10
8秒前
大智若愚骨头完成签到,获得积分10
12秒前
ZONG完成签到,获得积分10
13秒前
14秒前
kk完成签到,获得积分10
15秒前
15秒前
晴天霹雳3732完成签到,获得积分0
16秒前
行于繁华完成签到,获得积分10
16秒前
无语的梦菲完成签到 ,获得积分10
17秒前
在水一方应助Koko采纳,获得10
18秒前
胡说八道完成签到 ,获得积分10
19秒前
灵巧从霜发布了新的文献求助10
20秒前
21秒前
冷酷严青发布了新的文献求助10
21秒前
22秒前
兜兜玲儿完成签到,获得积分10
23秒前
神勇的青亦完成签到 ,获得积分10
24秒前
26秒前
longger发布了新的文献求助10
26秒前
27秒前
芙芙芙芙芙完成签到 ,获得积分10
29秒前
小祁鱼发布了新的文献求助10
30秒前
快乐藤椒堡完成签到 ,获得积分10
31秒前
桐桐应助钇铯采纳,获得10
31秒前
32秒前
64658完成签到,获得积分10
32秒前
Shiro发布了新的文献求助10
32秒前
忽被云偷走完成签到,获得积分20
35秒前
薛清棵完成签到 ,获得积分10
35秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846311
求助须知:如何正确求助?哪些是违规求助? 3388693
关于积分的说明 10553910
捐赠科研通 3109167
什么是DOI,文献DOI怎么找? 1713447
邀请新用户注册赠送积分活动 824742
科研通“疑难数据库(出版商)”最低求助积分说明 775039