Diffusion of Water Confined between Graphene Oxide Layers: Implications for Membrane Filtration

石墨烯 减速 氧化物 扩散 分子动力学 密度泛函理论 材料科学 氢键 化学物理 计算化学 化学 纳米技术 分子 热力学 有机化学 物理 冶金 生物化学 政治学 法学
作者
Moyassar Meshhal,Oliver Kühn
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:5 (8): 11119-11128 被引量:9
标识
DOI:10.1021/acsanm.2c02290
摘要

Among the carbon-based two-dimensional (2D) materials, graphene oxide (GO) has been attracting growing interest because of its ability to be utilized in the field of water remediation. Therefore, an atomistic understanding of the transport properties of water in layered GO is pivotal for the development of novel GO membranes. Surprisingly, the very issue of the 2D self-diffusion of water confined between two GO sheets appears to be controversial, and simulations showing either a slowdown or no effect have been reported. In any case, the formation of hydrogen bonds, i.e., among the confined water and between water and the GO functional groups, was identified to control diffusion. However, the results of molecular dynamics (MD) simulations heavily depend on the forces used. Density functional theory (DFT) and empirical force fields are opposite when it comes to accuracy and numerical costs. As a compromise in the present study, we performed MD simulations using a DFT-based tight-binding method to investigate the diffusion of water confined between GO sheets. Specifically, we considered six GO/water models, differing in the ordering of the epoxide and hydroxyl groups as well as in the thickness of the water layer. For these models having GO interlayer distances between 8 and 12 Å, we find a reduction of the diffusion coefficient by a factor between 2 and 3 compared with bulk water. One possible origin of this effect is the temporary trapping of water within hydrogen-bonded water bridges between the GO sheets. The proposed mechanism should be taken into account in the development of, for instance, GO membranes for water remediation or applications in the field of selective transport in separation membranes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秋丶凡尘完成签到,获得积分10
刚刚
迟迟不吃吃完成签到 ,获得积分10
1秒前
愉快的雪珍完成签到,获得积分10
1秒前
JamesPei应助Lyj采纳,获得10
1秒前
是康康呀发布了新的文献求助10
1秒前
Mrmao0213完成签到,获得积分20
1秒前
lynvin完成签到,获得积分10
2秒前
2秒前
黄3完成签到 ,获得积分10
2秒前
2秒前
仁爱宛筠完成签到,获得积分10
2秒前
Kepler299发布了新的文献求助30
3秒前
3秒前
3秒前
完美世界应助xiyue采纳,获得10
3秒前
小巧雪糕发布了新的文献求助10
3秒前
旺帮主发布了新的文献求助10
4秒前
QYY完成签到,获得积分10
4秒前
5秒前
Dr.Liujun完成签到,获得积分10
5秒前
5秒前
5秒前
科研通AI5应助小科采纳,获得10
5秒前
顾矜应助幸福的依瑶采纳,获得10
5秒前
6秒前
April完成签到,获得积分10
6秒前
liuww0778发布了新的文献求助10
6秒前
6秒前
认真以寒发布了新的文献求助10
6秒前
小鱼奈子完成签到,获得积分10
7秒前
勤劳代亦发布了新的文献求助10
7秒前
Samuel发布了新的文献求助10
7秒前
是康康呀完成签到,获得积分10
7秒前
智多星发布了新的文献求助10
8秒前
8秒前
烟花应助ty-采纳,获得10
8秒前
8秒前
吟月归客完成签到,获得积分10
8秒前
DDD完成签到,获得积分10
8秒前
geats发布了新的文献求助10
8秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830889
求助须知:如何正确求助?哪些是违规求助? 3373241
关于积分的说明 10478854
捐赠科研通 3093377
什么是DOI,文献DOI怎么找? 1702503
邀请新用户注册赠送积分活动 819081
科研通“疑难数据库(出版商)”最低求助积分说明 771251