Abstract The whole-rock cerium anomaly, tested for outer shelf-upper slope stratigraphic sections from the middle Ordovician through the lower Silurian of Scotland, is proposed as an empirical technique to develop a eustatic 3rd-order or finer-scale sea-level curve. This interval was chosen as it straddles the well-documented Late Ordovician glaciation and can be defined by graptolite zones. The anomaly is calculated from neutron activation analysis of low-carbonate, phosphate-free, fossil-free field-identified shales of the graptolite facies by comparison of the normalized cerium content with the linearized trend of the normalized composition of other rare earth elements in order of atomic number. For sections originally deposited in the main pycnocline below the surface mixed layer, values of the anomaly for a given sample would indicate its position on the redox curves developed for the early Paleozoic by Wilde (1987). Changes in the anomaly that are positive with time would indicate a lowering of sea level as the apparent depth on the redox curve would reflect more oxic conditions. Relative changes negative with time would indicate a rise in sea level as the apparent depth reflects more anoxic conditions. Depending on the vertical sample spacing and the time interval sampled, resolution of the order of 1 m.y. might be achieved. Thus the Vail et al. (1977) curves of the 3rd order (1 to 10 m.y.) or of finer scale could be obtained by this technique with the proper choice of section. Accordingly, for the early through middle Paleozoic when the main pycnocline was anoxic, this geochemical technique could be used to develop eustatic sea-level curves and additionally offer an independent calibration for seismic stratigraphy as well as an indicator of glacial-interglacial climatic sequences or eustatic changes due to fluctuations in global ridge crest volumes.