贝叶斯网络
贝叶斯概率
计算机科学
底漆(化妆品)
动态贝叶斯网络
计算生物学
任务(项目管理)
网络分析
人工智能
生物
化学
工程类
电气工程
有机化学
系统工程
出处
期刊:Science's STKE
[American Association for the Advancement of Science (AAAS)]
日期:2005-04-26
卷期号:2005 (281)
被引量:161
标识
DOI:10.1126/stke.2812005pl4
摘要
High-throughput proteomic data can be used to reveal the connectivity of signaling networks and the influences between signaling molecules. We present a primer on the use of Bayesian networks for this task. Bayesian networks have been successfully used to derive causal influences among biological signaling molecules (for example, in the analysis of intracellular multicolor flow cytometry). We discuss ways to automatically derive a Bayesian network model from proteomic data and to interpret the resulting model.
科研通智能强力驱动
Strongly Powered by AbleSci AI