Estimation of Exhaust Gas Temperature Using Artificial Neural Network in Turbofan Engines

涡扇发动机 人工神经网络 废气 环境科学 汽车工程 废气再循环 计算机科学 工程类 人工智能 废物管理
作者
Mustafa İlbaş,Mahmut Turkmen
出处
期刊:Istanbul University - DergiPark 被引量:12
摘要

This paper deals with the estimation of exhaust gas temperature (EGT) of a CFM56-7B turbofan engine using artificial neural network (ANN) at two different power settings, maximum continuous and take-off. The study was carried out using the operational parameters of the engine such as net thrust, fuel flow, low rotational speed, core rotational speed, pressure ratio, fan air inlet temperature, take-off margin temperature, and thrust specific fuel consumption. All these data are taken from test cell measurements during ground operating of the engines. In this study, the accuracy of ANN results is compared with the measurements and the results of a regression analysis earlier based multiple linear method. The comparison of the predictions of the models indicates that ANN is capable of accurately predicting EGT in used turbofan engines. The correlation between the exhaust gas temperature and the operational parameters of the engine was found to be 0.99 and 0.99 for training data and to be 0.90 and 0.97 for test data using ANN at two different power settings, maximum continuous and take-off, respectively. For both investigated power settings, maximum continuous and take-off, the mean absolute errors were found to be 2.1 per cent and 5.08 per cent, while the coefficients of variance of root mean square error were found to be 0.5705 and 0.3539, respectively. The results obtained from ANN models show good agreement with ground measurements and the regression models. Finally, we believe that ANN can be used for prediction of EGT as a predictive tool in this sort of application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xcgh给朱润玉的求助进行了留言
刚刚
刚刚
JeKing完成签到,获得积分10
刚刚
迷路雁枫完成签到,获得积分10
1秒前
机智的思远完成签到 ,获得积分10
2秒前
2秒前
3秒前
深情安青应助小白采纳,获得10
4秒前
默默毛豆完成签到,获得积分10
4秒前
思源应助糟糕的涵梅采纳,获得10
4秒前
葛儿完成签到 ,获得积分10
4秒前
快乐的柚子完成签到,获得积分10
5秒前
隐形曼青应助ZLQ采纳,获得10
5秒前
sunianjinshi完成签到,获得积分10
5秒前
6秒前
一诺相许完成签到 ,获得积分10
6秒前
领导范儿应助Jane采纳,获得10
6秒前
6秒前
白昼潜行发布了新的文献求助10
7秒前
阁主发布了新的文献求助10
7秒前
Merlin完成签到,获得积分10
8秒前
8秒前
不想做实验完成签到,获得积分10
8秒前
SAKURA完成签到 ,获得积分10
9秒前
阿依吉伦发布了新的文献求助10
9秒前
青见完成签到 ,获得积分10
10秒前
10秒前
11秒前
抹TEA发布了新的文献求助10
11秒前
浮游应助江夏采纳,获得10
12秒前
12秒前
qqxin发布了新的文献求助10
14秒前
zzznznnn完成签到,获得积分10
14秒前
超级冰块完成签到,获得积分10
15秒前
16秒前
小卷心菜发布了新的文献求助20
16秒前
ZLQ完成签到,获得积分10
17秒前
简默完成签到,获得积分10
18秒前
153266916完成签到 ,获得积分10
18秒前
ceeray23发布了新的文献求助20
19秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5381743
求助须知:如何正确求助?哪些是违规求助? 4505001
关于积分的说明 14020181
捐赠科研通 4414324
什么是DOI,文献DOI怎么找? 2424823
邀请新用户注册赠送积分活动 1417753
关于科研通互助平台的介绍 1395592