环氧树脂
复合材料
材料科学
尺寸
扫描电子显微镜
傅里叶变换红外光谱
复合环氧材料
X射线光电子能谱
聚乙二醇
粘附
化学工程
化学
工程类
有机化学
作者
Xiaomin Yuan,Bin Zhu,Xiaoqing Cai,Jianjun Liu,Ke Qiao,Junwei Yu
摘要
ABSTRACT A series of self‐emulsified waterborne epoxy resin (WEP) emulsions were used as surface sizing for carbon fibers (CFs) to improve the interfacial adhesion between the CF and epoxy matrix. In this work, the hydrogenated bisphenol‐A epoxy resin (HBPAE) was modified by polyethylene glycol (PEG) with molecular weights of 400, 800, 1000, 1500, 2000, 4000, and 6000 g/mol. The properties of the WEP emulsion were examined by Fourier transform infrared spectroscopy, dynamic light scattering, and transmission electron microscopy. The surface characteristics of sized CFs were evaluated using scanning electron microscopy, atomic force microscopy, and X‐ray photoelectron spectroscopy. Afterwards, CF/EP composites were prepared and their fracture surface and interlaminar shear strength (ILSS) were examined. The results indicated that PEG2000 modified HBPAE sizing had the optimum emulsion stability and film‐forming ability. Meanwhile, the results also demonstrated that a continuous and uniform sizing layer was formed on the surface of CFs and the surface sizing was excellent in improving the chemical activity of CFs. Compared with unsized CFs, the O1s/C1s composition ratio was observed to increase from 11.51% to 33.17% and the ILSS of CF/EP composites increased from 81.2 to 89.7 MPa, exhibiting better mechanical property than that of commercial Takemoto S64 sized CFs. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44757.
科研通智能强力驱动
Strongly Powered by AbleSci AI