Design and Modeling of High-Efficiency GaAs -Nanowire Metal-Oxide-Semiconductor Solar Cells beyond the Shockley-Queisser Limit: An NEGF Approach

量子效率 能量转换效率 纳米线 物理 材料科学 量化(信号处理) 量子点 光电子学 算法 计算机科学
作者
Subhrajit Sikdar,Basudev Nag Chowdhury,Sanatan Chattopadhyay
出处
期刊:Physical review applied [American Physical Society]
卷期号:15 (2) 被引量:11
标识
DOI:10.1103/physrevapplied.15.024055
摘要

The present work proposes a $\mathrm{Ga}\mathrm{As}$-nanowire-based vertical metal-oxide-semiconductor (MOS) solar cell of quantum scale to achieve very high efficiency beyond the Shockley-Queisser (SQ) limit. Photogeneration and carrier transport in such devices are analytically modeled by adopting nonequilibrium Green's function formalism based on second quantization field operators for the incident photons and generated photocarriers. The study suggests that the utilization of photogenerated light and heavy holes to harvest solar energy is capable of providing significantly higher power conversion efficiency above the SQ limit. Such superior efficiency is achieved due to the resonance of incident photon modes with the energy gap between three-dimensional-quantized electron states and two-dimensional-quantized hole subbands. The power conversion efficiency, along with other relevant solar-cell-performance parameters, such as open-circuit voltage, short-circuit current, fill factor, external quantum efficiency, and responsivity, is observed to depend significantly on the nanowire diameter and top-oxide thickness, which, in turn, controls the quantization effect in such MOS devices. The results show that the power conversion efficiency of 50% and above can be achieved in the present tosylate-modified poly(3,4-ethylenedioxythiophene) (PEDOT-Tos)/${\mathrm{Si}\mathrm{O}}_{2}/\mathrm{Ga}\mathrm{As}$-nanowire MOS solar cell for a combination of nanowire diameter and oxide thickness in the range of 18--14 nm and 4--2 nm, respectively. Thus, the proposed device scheme offers an alternative design route for next-generation solar cells with superior efficiency by engineering the quantization effect.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助科研通管家采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
阔达语儿应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
领衔完成签到,获得积分20
1秒前
研友_nqr2pZ完成签到,获得积分10
1秒前
lucky完成签到,获得积分20
1秒前
1秒前
2秒前
2秒前
BOYA完成签到,获得积分10
2秒前
搬砖发布了新的文献求助30
2秒前
3秒前
4秒前
4秒前
杜彦君发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
5秒前
lucky发布了新的文献求助10
5秒前
6秒前
郷禦完成签到,获得积分10
6秒前
无解发布了新的文献求助10
7秒前
Mrlll发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
锦程发布了新的文献求助10
8秒前
我是老大应助liaodongjun采纳,获得30
8秒前
8秒前
拉拉缨发布了新的文献求助30
8秒前
Akim应助liu采纳,获得10
8秒前
Ryujin完成签到,获得积分10
9秒前
11完成签到,获得积分10
9秒前
Jiang发布了新的文献求助10
10秒前
aiueo发布了新的文献求助10
11秒前
忧伤的冰安完成签到,获得积分10
12秒前
丘比特应助研友_ZegMrL采纳,获得10
12秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 666
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
Medicine and the Navy, 1200-1900: 1815-1900 420
Medical Professionalism Theory, Education, and Practice 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4245986
求助须知:如何正确求助?哪些是违规求助? 3779141
关于积分的说明 11865186
捐赠科研通 3432821
什么是DOI,文献DOI怎么找? 1883975
邀请新用户注册赠送积分活动 935436
科研通“疑难数据库(出版商)”最低求助积分说明 841950