材料科学
等结构
结晶学
物理
磁化
费米能级
晶体结构
凝聚态物理
电子
化学
核物理学
量子力学
磁场
作者
Brenden R. Ortiz,Lídia C. Gomes,Jennifer R. Morey,Michał J. Winiarski,Mitchell M. Bordelon,John S. Mangum,Iain W. H. Oswald,J. A. Rodriguez‐Rivera,James R. Neilson,Stephen D. Wilson,Elif Ertekin,Tyrel M. McQueen,Eric S. Toberer
标识
DOI:10.1103/physrevmaterials.3.094407
摘要
In this work, we present our discovery and characterization of a new kagome prototype structure, ${\mathrm{KV}}_{3}{\mathrm{Sb}}_{5}$. We also present the discovery of the isostructural compounds ${\mathrm{RbV}}_{3}{\mathrm{Sb}}_{5}$ and ${\mathrm{CsV}}_{3}{\mathrm{Sb}}_{5}$. All materials exhibit a structurally perfect two-dimensional kagome net of vanadium. Density-functional theory calculations indicate that the materials are metallic, with the Fermi level in close proximity to several Dirac points. Powder and single-crystal syntheses are presented, with postsynthetic treatments shown to deintercalate potassium from single crystals of ${\mathrm{KV}}_{3}{\mathrm{Sb}}_{5}$. Considering the proximity to Dirac points, deintercalation provides a convenient means to tune the Fermi level. Magnetization measurements indicate that ${\mathrm{KV}}_{3}{\mathrm{Sb}}_{5}$ exhibits behavior consistent with a the Curie-Weiss model at high temperatures, although the effective moment is low $(0.22{\ensuremath{\mu}}_{\text{B}}$ per vanadium ion). An anomaly is observed in both magnetization and heat capacity measurements at 80 K, below which the moment is largely quenched. Elastic neutron scattering measurements find no obvious evidence of long-range or short-range magnetic ordering below 80 K. The possibility of an orbital-ordering event is considered. Single-crystal resistivity measurements show the effect of deintercalation on the electron transport and allow estimation of the Kadowaki-Woods ratio in ${\mathrm{KV}}_{3}{\mathrm{Sb}}_{5}$. We find that $A/{\ensuremath{\gamma}}^{2}\ensuremath{\sim}61\phantom{\rule{4pt}{0ex}}\ensuremath{\mu}\mathrm{Ohm}$ cm ${\mathrm{mol}}_{\text{FU}}^{2}\phantom{\rule{4pt}{0ex}}{\mathrm{K}}^{2}\phantom{\rule{4pt}{0ex}}{\mathrm{J}}^{\ensuremath{-}2}$, suggesting that correlated electron transport may be possible. ${\mathrm{KV}}_{3}{\mathrm{Sb}}_{5}$ and its cogeners ${\mathrm{RbV}}_{3}{\mathrm{Sb}}_{5}$ and ${\mathrm{CsV}}_{3}{\mathrm{Sb}}_{5}$ represent a new family of kagome metals, and our results demonstrate that they deserve further study as potential model systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI