清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Detecting health misinformation in online health communities: Incorporating behavioral features into machine learning based approaches

误传 计算机科学 健康传播 人工智能 心理学 沟通 计算机安全
作者
Yuehua Zhao,Jingwei Da,Jiaqi Yan
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:58 (1): 102390-102390 被引量:164
标识
DOI:10.1016/j.ipm.2020.102390
摘要

Curbing the diffusion of health misinformation on social media has long been a public concern since the spread of such misinformation can have adverse effects on public health. Previous studies mainly relied on linguistic features and textual features to detect online health-related misinformation. Based on the Elaboration Likelihood Model (ELM), this study proposed that the features of online health misinformation can be classified into two levels: central-level and peripheral-level. In this study, a novel health misinformation detection model was proposed which incorporated the central-level features (including topic features) and the peripheral-level features (including linguistic features, sentiment features, and user behavioral features). In addition, the following behavioral features were introduced to reflect the interaction characteristics of users: Discussion initiation, Interaction engagement, Influential scope, Relational mediation, and Informational independence. Due to the lack of a labeled dataset, we collected the dataset from a real online health community in order to provide a real scenario for data analysis. Four types of misinformation were identified through the coding analysis. The proposed model and its individual features were validated on the real-world dataset. The model correctly detected about 85% of the health misinformation. The results also suggested that behavioral features were more informative than linguistic features in detecting misinformation. The findings not only demonstrated the efficacy of behavioral features in health misinformation detection but also offered both methodological and theoretical contributions to misinformation detection from the perspective of integrating the features of messages as well as the features of message creators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心灵美鑫完成签到 ,获得积分10
13秒前
wzgkeyantong完成签到,获得积分10
27秒前
赵一完成签到 ,获得积分10
42秒前
自然亦凝完成签到,获得积分10
44秒前
27完成签到 ,获得积分10
48秒前
脑洞疼应助害怕的恶天采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
暗号完成签到 ,获得积分0
1分钟前
ding应助快哒哒哒采纳,获得10
2分钟前
fabius0351完成签到 ,获得积分10
2分钟前
迷茫的一代完成签到,获得积分10
3分钟前
美满的稚晴完成签到 ,获得积分10
3分钟前
3分钟前
kmzzy完成签到,获得积分10
3分钟前
快哒哒哒发布了新的文献求助10
4分钟前
4分钟前
zimo发布了新的文献求助10
4分钟前
Ava应助dynamoo采纳,获得10
4分钟前
dynamoo完成签到,获得积分10
4分钟前
meg完成签到,获得积分10
4分钟前
方白秋完成签到,获得积分0
4分钟前
沙海沉戈完成签到,获得积分0
4分钟前
科研通AI2S应助Criminology34采纳,获得300
5分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
5分钟前
GPTea应助三哥采纳,获得80
6分钟前
share完成签到 ,获得积分10
6分钟前
刘刘完成签到 ,获得积分10
6分钟前
Able完成签到,获得积分10
6分钟前
研友_MLJWvn完成签到 ,获得积分10
7分钟前
GPTea应助科研通管家采纳,获得50
7分钟前
Hello应助科研通管家采纳,获得10
7分钟前
7分钟前
8分钟前
大医仁心完成签到 ,获得积分10
8分钟前
8分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
8分钟前
9分钟前
开心向真完成签到,获得积分10
9分钟前
随心所欲完成签到 ,获得积分10
10分钟前
KINGAZX完成签到 ,获得积分10
10分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5149188
求助须知:如何正确求助?哪些是违规求助? 4345305
关于积分的说明 13530339
捐赠科研通 4187589
什么是DOI,文献DOI怎么找? 2296376
邀请新用户注册赠送积分活动 1296729
关于科研通互助平台的介绍 1240846