羊奶
材料科学
脆性
透射电子显微镜
打滑(空气动力学)
复合材料
图层(电子)
复合数
冶金
金属间化合物
纳米技术
热力学
物理
合金
作者
Lulu Li,Yanqing Su,Irene J. Beyerlein,Wei‐Zhong Han
出处
期刊:Science Advances
[American Association for the Advancement of Science]
日期:2020-09-24
卷期号:6 (39)
被引量:40
标识
DOI:10.1126/sciadv.abb6658
摘要
Fe-Al compounds are of interest due to their combination of light weight, high strength, and wear and corrosion resistance, but new forms that are also ductile are needed for their widespread use. The challenge in developing Fe-Al compositions that are both lightweight and ductile lies in the intrinsic tradeoff between Al concentration and brittle-to-ductile transition temperature. Here, we show that a room-temperature, ductile-like response can be attained in a FeAl/FeAl2 layered composite. Transmission electron microscopy, nanomechanical testing, and ab initio calculations find a critical layer thickness on the order of 1 μm, below which the FeAl2 layer homogeneously codeforms with the FeAl layer. The FeAl2 layer undergoes a fundamental change from multimodal, contained slip to unimodal slip that is aligned and fully transmitting across the FeAl/FeAl2 interface. Lightweight Fe-Al alloys with room-temperature, ductile-like responses can inspire new applications in reactor systems and other structural applications for extreme environments.
科研通智能强力驱动
Strongly Powered by AbleSci AI