神经炎症
内分泌学
内科学
海马结构
海马体
糖皮质激素受体
小胶质细胞
糖尿病
兴奋剂
医学
糖皮质激素
链脲佐菌素
炎症
受体
作者
Zirong Li,Yuanshan Han,Zhuo Liu,Hong-Qing Zhao,Jian Liu,Hui Yang,Yuhong Wang
标识
DOI:10.1016/j.ejphar.2021.173861
摘要
Clinical studies have shown that diabetes can present with underlying depression, and a combination of the two can lead to emotional, memory and cognitive disorders, closely associated with hippocampal neuroinflammation. However, the mechanism underlying the development of hippocampal neuroinflammation under the above condition remains elusive. The aims of this study were to explore the pathogenesis of diabetes combined with depression, and the effect of dexamethasone (Dex), a glucocorticoid receptor (GR) agonist, on hippocampal neuroinflammation in diabetic rats with chronic unpredictable mild stress (CUMS). Therefore, rats were intragastrically fed on a high-fat diet (10% cholesterol 10 ml/kg) for 14 days and thereafter injected with 38 mg/kg of streptozotocin on the 15th day to induce diabetes. Dex treatment of the diabetic and CUMS rats ameliorated the depression-associated behavior in the respective rats. Apart from enhanced depressive behavior, diabetes-depressed condition also up-regulated the expression of hippocampus microglia chemokine Ⅰ receptor (CX3CR1) and secretion of several pro-inflammatory factors, in particular, interleukin 1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8) and tumor necrosis factor - α (TNF-α). Hematoxylin-eosin staining revealed inflammatory damages in the hippocampus. Western blot analysis further revealed repression of GR proteins converse to the nuclear factor kappa-B (NF-κB) proteins, which were up-regulated. Intriguingly, Dex reversed the above events by inhibiting inflammatory reactions in the hippocampus. Consequently, played an antidepressant effect in diabetic and CUMS model rats. Overall, findings of this research suggest that the physiopathology of diabetes with stress cormobity are mediated by inflammatory reactions in the hippocampus. In particular, the responses are associated with regulation of GR/NF-κB signaling pathway.
科研通智能强力驱动
Strongly Powered by AbleSci AI