Deep net simulator (DNS): a new insight into reservoir simulation

储层模拟 平均绝对百分比误差 复制 模拟 深度学习 计算机科学 石油工程 流量(数学) 储层建模 油藏 仿真建模 计算机模拟 油藏计算 水库工程 相关系数 人工智能 人工神经网络 机器学习 统计 地质学 数学 石油 古生物学 几何学 数理经济学 循环神经网络
作者
Shahdad Ghassemzadeh,M. E. Gonzalez Perdomo,Manouchehr Haghighi,Ehsan Abbasnejad
出处
期刊:The APPEA journal [CSIRO Publishing]
卷期号:60 (1): 124-124
标识
DOI:10.1071/aj19093
摘要

Reservoir simulation plays a vital role as a diagnostics tool to better understand and predict a reservoir’s behaviour. The primary purpose of running a reservoir simulation is to replicate reservoir performance under different production conditions; therefore, the development of a reliable and fast dynamic reservoir model is a priority for the industry. In each simulation, the reservoir is divided into millions of cells, with fluid and rock attributes assigned to each cell. Based on these attributes, flow equations are solved through numerical methods, resulting in an excessively long processing time. Given the recent progress in machine learning methods, this study aimed to further investigate the possibility of using deep learning in reservoir simulations. Throughout this paper, we used deep learning to build a data-driven simulator for both 1D oil and 2D gas reservoirs. In this approach, instead of solving fluid flow equations directly, a data-driven model instantly predicts the reservoir pressure using the same input data of a numerical simulator. Datasets were generated using a physics-based simulator. It was found that for the training and validation sets, the mean absolute percentage error (MAPE) was less than 15.1% and the correlation coefficient, R2, was more than 0.84 for the 1D oil reservoirs, while for the 2D gas reservoir MAPE < 0.84% and R2 ≈1. Furthermore, the sensitivity analysis results confirmed that the proposed approach has promising potential (MAPE < 5%, R2 > 0.9). The results agreed that the deep learning based, data-driven model is reasonably accurate and trustworthy when compared with physics-derived models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助酷炫涫采纳,获得10
刚刚
深情安青应助Kane采纳,获得10
刚刚
1秒前
俊逸绮山发布了新的文献求助10
1秒前
iNk应助mmyhn采纳,获得10
2秒前
5秒前
共享精神应助寒冷的曼易采纳,获得10
6秒前
赖雅迪发布了新的文献求助10
6秒前
8秒前
善学以致用应助PanGanlin采纳,获得10
10秒前
10秒前
Kane发布了新的文献求助10
11秒前
玉玊发布了新的文献求助10
11秒前
12秒前
llllx完成签到,获得积分10
12秒前
13秒前
Kane完成签到,获得积分10
16秒前
18秒前
henryhc_完成签到 ,获得积分10
18秒前
Yasong发布了新的文献求助10
18秒前
万能图书馆应助玉玊采纳,获得10
19秒前
19秒前
lin应助wan采纳,获得10
19秒前
张馨元完成签到,获得积分10
21秒前
艾坤铠甲发布了新的文献求助10
22秒前
赖雅迪完成签到,获得积分10
25秒前
29秒前
29秒前
29秒前
可爱的函函应助梁采瑞采纳,获得10
31秒前
霸气向日葵完成签到,获得积分10
32秒前
andy发布了新的文献求助10
32秒前
热情的老虎完成签到,获得积分10
32秒前
33秒前
咕噜仔发布了新的文献求助10
34秒前
怕黑绮梅发布了新的文献求助10
35秒前
昏睡的蟠桃应助哎呀会飞采纳,获得50
35秒前
悦欣月完成签到,获得积分10
35秒前
36秒前
36秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796465
求助须知:如何正确求助?哪些是违规求助? 3341712
关于积分的说明 10307381
捐赠科研通 3058317
什么是DOI,文献DOI怎么找? 1678107
邀请新用户注册赠送积分活动 805873
科研通“疑难数据库(出版商)”最低求助积分说明 762838