亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multimodal Co-learning: Challenges, applications with datasets, recent advances and future directions

模式 计算机科学 多模式学习 人工智能 机器学习 模态(人机交互) 实施 深度学习 资源(消歧) 程序设计语言 计算机网络 社会科学 社会学
作者
Anil Rahate,Rahee Walambe,Sheela Ramanna,Ketan Kotecha
出处
期刊:Information Fusion [Elsevier BV]
卷期号:81: 203-239 被引量:62
标识
DOI:10.1016/j.inffus.2021.12.003
摘要

Multimodal deep learning systems that employ multiple modalities like text, image, audio, video, etc., are showing better performance than individual modalities (i.e., unimodal) systems. Multimodal machine learning involves multiple aspects: representation, translation, alignment, fusion, and co-learning. In the current state of multimodal machine learning, the assumptions are that all modalities are present, aligned, and noiseless during training and testing time. However, in real-world tasks, typically, it is observed that one or more modalities are missing, noisy, lacking annotated data, have unreliable labels, and are scarce in training or testing, and or both. This challenge is addressed by a learning paradigm called multimodal co-learning. The modeling of a (resource-poor) modality is aided by exploiting knowledge from another (resource-rich) modality using the transfer of knowledge between modalities, including their representations and predictive models. Co-learning being an emerging area, there are no dedicated reviews explicitly focusing on all challenges addressed by co-learning. To that end, in this work, we provide a comprehensive survey on the emerging area of multimodal co-learning that has not been explored in its entirety yet. We review implementations that overcome one or more co-learning challenges without explicitly considering them as co-learning challenges. We present the comprehensive taxonomy of multimodal co-learning based on the challenges addressed by co-learning and associated implementations. The various techniques, including the latest ones, are reviewed along with some applications and datasets. Additionally, we review techniques that appear to be similar to multimodal co-learning and are being used primarily in unimodal or multi-view learning. The distinction between them is documented. Our final goal is to discuss challenges and perspectives and the important ideas and directions for future work that we hope will benefit for the entire research community focusing on this exciting domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
复方蛋酥卷完成签到,获得积分10
18秒前
45秒前
乐观之瑶完成签到,获得积分20
51秒前
tree发布了新的文献求助10
51秒前
3分钟前
李爱国应助gjhhh采纳,获得10
3分钟前
Lucky发布了新的文献求助10
3分钟前
3分钟前
gjhhh发布了新的文献求助10
3分钟前
科研通AI5应助范范采纳,获得10
5分钟前
5分钟前
范范发布了新的文献求助10
5分钟前
小蘑菇应助科研通管家采纳,获得10
5分钟前
5分钟前
cyh发布了新的文献求助10
5分钟前
Hello应助cyh采纳,获得10
6分钟前
6分钟前
卓头OvQ发布了新的文献求助10
6分钟前
范范完成签到,获得积分10
6分钟前
刘玉欣完成签到 ,获得积分10
7分钟前
7分钟前
Lucas应助科研通管家采纳,获得10
7分钟前
lr完成签到 ,获得积分10
7分钟前
彭于晏应助诸茹嫣采纳,获得10
8分钟前
8分钟前
诸茹嫣发布了新的文献求助10
8分钟前
9分钟前
迷茫的一代完成签到,获得积分10
9分钟前
光合作用完成签到,获得积分10
9分钟前
糊涂的青烟完成签到 ,获得积分10
10分钟前
月儿完成签到 ,获得积分10
11分钟前
领导范儿应助科研通管家采纳,获得10
11分钟前
吃点水果保护局完成签到 ,获得积分10
11分钟前
巴山夜雨完成签到,获得积分10
12分钟前
FashionBoy应助oleskarabach采纳,获得10
12分钟前
13分钟前
13分钟前
14分钟前
xiaoheshan发布了新的文献求助10
15分钟前
思源应助lsx采纳,获得10
15分钟前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827282
求助须知:如何正确求助?哪些是违规求助? 3369624
关于积分的说明 10456586
捐赠科研通 3089268
什么是DOI,文献DOI怎么找? 1699822
邀请新用户注册赠送积分活动 817501
科研通“疑难数据库(出版商)”最低求助积分说明 770251