亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Three‐dimensional feature maps and convolutional neural network‐based emotion recognition

模式识别(心理学) 计算机科学 人工智能 卷积神经网络 脑电图 特征(语言学) 小波 情绪分类 特征提取 熵(时间箭头) 语音识别 语言学 哲学 心理学 物理 量子力学 精神科
作者
Xiangwei Zheng,Xiaomei Yu,Yongqiang Yin,Tiantian Li,Xiaoyan Yan
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:36 (11): 6312-6336 被引量:39
标识
DOI:10.1002/int.22551
摘要

In recent years, automatic emotion recognition renders human–computer interaction systems intelligent and friendly. Emotion recognition based on electroencephalogram (EEG) has received widespread attention and many research results have emerged, but how to establish an integrated temporal and spatial feature fusion and classification method with improved convolutional neural networks (CNNs) and how to utilize the spatial information of different electrode channels to improve the accuracy of emotion recognition in the deep learning are two important challenges. This paper proposes an emotion recognition method based on three-dimensional (3D) feature maps and CNNs. First, EEG data are calibrated with 3 s baseline data and divided into segments with 6 s time window, and then the wavelet energy ratio, wavelet entropy of five rhythms, and approximate entropy are extracted from each segment. Second, the extracted features are arranged according to EEG channel mapping positions, and then each segment is converted into a 3D feature map, which is used to simulate the relative position of electrode channels on the scalp and provides spatial information for emotion recognition. Finally, a CNN framework is designed to learn local connections among electrode channels from 3D feature maps and to improve the accuracy of emotion recognition. The experiments on data set for emotion analysis using physiological signals data set were conducted and the average classification accuracy of 93.61% and 94.04% for valence and arousal was attained in subject-dependent experiments while 83.83% and 84.53% in subject-independent experiments. The experimental results demonstrate that the proposed method has better classification accuracy than the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lyw发布了新的文献求助10
2秒前
wait完成签到,获得积分20
3秒前
CipherSage应助丽优采纳,获得10
7秒前
14秒前
djy发布了新的文献求助10
20秒前
24秒前
djy完成签到,获得积分10
27秒前
Lewis发布了新的文献求助10
28秒前
昌莆完成签到 ,获得积分10
33秒前
35秒前
天天快乐应助丽优采纳,获得10
40秒前
zmjmj发布了新的文献求助10
41秒前
42秒前
炸鸡叔发布了新的文献求助10
47秒前
搜集达人应助炸鸡叔采纳,获得100
1分钟前
小马甲应助zmjmj采纳,获得10
1分钟前
小马甲应助丽优采纳,获得10
1分钟前
1分钟前
星愿发布了新的文献求助10
1分钟前
1分钟前
coco发布了新的文献求助10
1分钟前
星愿完成签到,获得积分10
1分钟前
Orange应助lyw采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
9527应助科研通管家采纳,获得10
1分钟前
丘比特应助af采纳,获得20
1分钟前
NexusExplorer应助丽优采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
丽优发布了新的文献求助10
2分钟前
丽优发布了新的文献求助10
2分钟前
丽优发布了新的文献求助10
2分钟前
丽优发布了新的文献求助10
2分钟前
丽优发布了新的文献求助10
2分钟前
2分钟前
coco完成签到,获得积分20
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426463
求助须知:如何正确求助?哪些是违规求助? 4540214
关于积分的说明 14171846
捐赠科研通 4457975
什么是DOI,文献DOI怎么找? 2444749
邀请新用户注册赠送积分活动 1435805
关于科研通互助平台的介绍 1413245