脂质代谢
内分泌学
内科学
膜联蛋白A1
糖尿病肾病
促炎细胞因子
炎症
脂滴
安普克
生物
糖尿病
医学
蛋白激酶A
膜联蛋白
细胞凋亡
细胞生物学
磷酸化
生物化学
作者
Liang Wu,Changjie Liu,Dong‐Yuan Chang,Rui Zhan,Mingming Zhao,Sin Man Lam,Guanghou Shui,Ming‐Hui Zhao,Lemin Zheng,Min Chen
出处
期刊:Diabetes
[American Diabetes Association]
日期:2021-06-08
卷期号:70 (10): 2192-2203
被引量:99
摘要
Inflammation and abnormal metabolism play important roles in the pathogenesis of diabetic nephropathy (DN). Annexin A1 (ANXA1) contributes to inflammation resolution and improves metabolism. In this study, we assess the effects of ANXA1 in diabetic mice and proximal tubular epithelial cells (PTECs) treated with high glucose plus palmitate acid (HGPA) and explore the association of ANXA1 with lipid accumulation in patients with DN. It is found that ANXA1 deletion aggravates renal injuries, including albuminuria, mesangial matrix expansion, and tubulointerstitial lesions in high-fat diet/streptozotocin–induced diabetic mice. ANXA1 deficiency promotes intrarenal lipid accumulation and drives mitochondrial alterations in kidneys. In addition, Ac2-26, an ANXA1 mimetic peptide, has a therapeutic effect against lipid toxicity in diabetic mice. In HGPA-treated human PTECs, ANXA1 silencing causes FPR2/ALX-driven deleterious effects, which suppress phosphorylated Thr172 AMPK, resulting in decreased peroxisome proliferator–activated receptor α and carnitine palmitoyltransferase 1b expression and increased HGPA-induced lipid accumulation, apoptosis, and elevated expression of proinflammatory and profibrotic genes. Last but not least, the extent of lipid accumulation correlates with renal function, and the level of tubulointerstitial ANXA1 expression correlates with ectopic lipid deposition in kidneys of patients with DN. These data demonstrate that ANXA1 regulates lipid metabolism of PTECs to ameliorate disease progression; hence, it holds great potential as a therapeutic target for DN.
科研通智能强力驱动
Strongly Powered by AbleSci AI